Quality Punches, Pilots,

Die Buttons, \& Retainers

Global leader in providing fabrication and stamping solutions

Ball Lock Quality Products

Product Applications

Dayton Ball Lock Punches, Retainers, Die Buttons, and Accessories are mainstays in industries with high-demand applications, including automotive and major appliance manufacturing. Because there is no need to pull a die from the press, removal and replacement of worn punches can reduce downtime and improve profitability.

Dayton Ball Lock Punches add longer tool life and improve finished part quality. For example, Dayton Jektole ${ }^{\circledR}$ Punches (slug ejection punches) provide increased punch to die button clearance; can triple the number of cycles between punch regrinds; and extend tool life.

Dayton Ball Lock Die Buttons include Ball

 Lock, Press Fit, and EDM Die Button Blanks.Dayton Ball Lock Retainers provide many features, functions, and benefits. For example, Dayton True Position ${ }^{\circledR}$ Retainers (the recognized industry standard) eliminate hand fitting; reduce mounting time, and are ideally suited for both round and complexshaped products. Other Dayton Retainers include Multi-Position ${ }^{\text {TM }}$, End and Square, Single Punch, and our unique line of EZ Fit ${ }^{T M}$ Retainers-a simpler, better way to reconfigure and/or replace existing retainers.

Dayton Ball Lock Accessories (e.g., backing plugs, ball release tools, and urethane strippers) complete the full line of Dayton Ball Lock products, and can help speed

Ordering Information

Each page contains detailed instructions on how to order specific Dayton Ball Lock products. Individual product drawings completely define the product-including shape, dimensions, tolerances, and concentricity. When ordering, you are asked to specify quantity, product type, shank and length codes, and point or hole size (for example).

In the example below, the type specified is "HPR." "H" stands for heavy duty, "P" stands for punch, and "R" stands for rectangle. 50 is the shank diameter, which is coded by the first two digits of the decimal equivalent (.500"). 275 is the overall length, which is coded by inches and quarterinches (2.75"). Finally, P. 350 and W. 190 represent the point or hole size dimension.

HOW TO ORDER

Standard Alterations

Punches, die buttons, and retainers are available in sizes other than those listed in the catalog.

When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P and W dimensions are outside the standard range, an " X " is placed in front of the P or W dimension, e.g., "XP" and/or "XW." If the point length is longer or shorter than standard, designate "XB" for the point length. See the foldout tabs in the individual product sections for these and other special order designations.

[^0]Punches
Standard Shapes

HJ_Jektole ${ }^{\ominus}$-Heavy Duty 4,5
Round/Shape

LJ_ Jektole ${ }^{\oplus}$-Light Duty 14,15
Round/Shape

LP_Regular-Light Duty Round/Shape	$\mathbf{1 6 , 1 7}$
LPT Pilots-Light Duty $\mathbf{1 8 , 1}$ Regular	
LPA Pilots-Light Duty	$\mathbf{2 0 , 2 1}$

Punches (cont'd)

LJB/LPB Blanks

 22-Light Duty
Jektole"/Regular
LK_/LZ_—Light Duty 23
Point Larger than Shank Jektole $\%$ Regular

Die Buttons

LD_Die Buttons-Ball Lock 24 Round/Shape

KD_Die Buttons-Press Fit 25 Round/Shape
KDU/KDE

EDM Button Blanks
Round

Retainers

HRT/LRT Retainers
-Heavy Duty/Light Duty True Position ${ }^{\oplus}$ with Backing Plug

HRTB Single Punch
-Heavy Duty
True Position ${ }^{\oplus}$ with Backing Plate

HRI/LRI Inserts
-Heavy Duty/Light Duty

Miscellaneous/Other

Jektole ${ }^{\circ}$ Data
39

Locking Devices 40
Key Flats /Dowel Slots

Urethane Strippers 41

Shear Angles
42

Product Designation

Each page contains detailed instructions on how to order specific Dayton Ball Lock products. In addition, use the following chart to define the product as a part number.

Diameter (D) is shown on the order as a two- or threedigit code. To convert the shank diameter to the appropriate code, use the following chart.

Code	D	Code	D	Code	D
12	. 1250	50	. 5000	150	1.5000
18	. 1875	62	. 6250	175	1.7500
25	. 2500	75	. 7500	200	2.0000
31	. 3125	87	. 8750	225	2.2500
37	. 3750	100	1.0000	250	2.5000
43	. 4375	125	1.2500	275	2.7500

Classified Shapes

Classified shapes (83 common shapes, no detailing required) are available on all punches, die buttons, and guide bushings, as indicated in this catalog. See pp. 32, 33 for more information and special instructions. Also, see individual product pages and p. 40 for additional information on orientation and views.

Clearance

Normal grinding methods produce:
(1. 007 max. fillet on the punch matching corner shape on the die button.

(2. 007 max. fillet on the die button

- matching corner shape on the punch.

Standard Alterations

Regular Ball Lock punches are available in sizes
other than those shown in the chart o t the eftr. When ordering, you are asked to specify different
designations or various non-standard dimensions.

 side the standard range, an " " ${ }^{\text {" }}$ is placed in front
of the P or W dimension, e.g, "XP" and/or "XW."
 nate "XB" as the point length. Also see "Standard
Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings Some catalog productis can be boated to increase nardiness,
reauce galing, and imporove wear andolo corrosion resistance,
 DayTiNe (XNT)-applied via PVD (physical vapor depostion) Provides extem haraness hharc as carbide) and excellent
lubirifle when used with a lubicant Not tecommended for

 Approx. hardness: Vickers 3000 . than other coatings
ness:
Vicheris 2000

 vickers 3200 .

5ixuasu
 $\stackrel{X B}{\square}$
 Comet ine

XLB

BR Striaht Betore Radius

Fnd (10-P) V value on let side ot chatt

Regular Pilots

Heavy Duty

Regular Pilots
Heavy Duty
(2):

Regular pilots are built to exact tolerances; the parabolic point shape allows for smooth pick--up action, and pilots
offer a wide range of unique punching and fabrication offer a wide rater
applications.

Standard Alterations
Regular P Pliots-Heawy Duty
Surface Coatings

 Daytine (XNT)-appiled via PVD (ohysicial vapor deposition)
 DayTTNTM (XAN)-ultarahard high.aluminum PVD coating.

 than inter coatings.
ness:
Vickers 2000 .

 sionat change
Vickers 320
20

 $\square \mathrm{AB}$

SBR Striant Betor Radius
Todemine Length of Radius Blend (L-R
 cole $\substack{\text { Example: } \\ \text { D=37 } \\ 0=375}$

Dayton Progress Corporation

Positive Pick-Up Pilots
 Hoasw Duty

Positive Pick-Up Pilots
Heavy Duty

Features/Benefits

Cowto orane

```
lac
```


Surface Coating Some catalag productis can be ooated to increase enardness,
reucuce galling, and improve wear andor corrosion resistance,
 DayTiNe (XNT)-applied via PVD (physical vapor deposition)

 TicN (CCN)-veny hard PvD, thin film. Provides ulta harchness
(harder than carbioe) and superior abrasive wear resistance.

Diamond Like Carbon Coating (XCD)-combines high hard.
ness with an extemel low oefficient of tricion. G Good pro-
nesion

늘․
 19

XP ${ }^{\text {p }}$ Simenisins

 \Longrightarrow
 way

$X 1$

SBR s.mem nemono beum

and
 and

$\substack{\text { Example: } \\ 0.37 \\ p=.75}$

ght 8
8

11

 www.daytonlamina.com www.daytonlamina.comDayton Progress Corporation \square

Punch Blanks Jektole $\&$ Regular
Heavy Duty

Point Larger than Shank Jektole \& Regular
Heavy Duty

 can be specified at on o odditional or oos
Custom Bail seat Locations
Custom Ball seat Locations can be

Not recommended for diameters
under. 750 or HZ _ and .500 for HK

Surface Coating Some catalog products can be coated to increase hardness,
reatuce galing, and inporve wear andoro corrosion resistance.
 DayTiNe (XNT)-appied via PVD (physical vapor deposition)
 DayTAN" (XAN)-ultaranard, high-auminum PVD coating.
Absonsts shears stess and
 TicN (XCN)-very hard PVV, thin film. Provides ulta hardness
(harder than cantiole and sumperio aborasive wear resistance.

 than inter coatings.
ness:
Vickers 2000 .

 ness, and dimensional stability.

 sionat change
Vickers 320
20

Dayton Slug Control

Dayton Slug Control is a guaranteed method for

reducinged the risk of por
suling
slugs to the die sufact slugs st the die surface
during withdrawal of the punch. A series of groove
is designed inside the die is designed inside the diee
button. There, the slugs
are trapeed until the tall are trapped untit they fall free
through the relief. The
throug he reiel Mhe use of Dayton Slug Control
has no effect on hole size, and will not require any has no eftect on hole size, and will no
changes in current regrind practices.
Our guarantee: Use Dayton Slug Control in a
stamping die now pulling slugs. If. for any reas stamping die now pulling slugs. If, for any reason,
you are not completely satisfied, we will retund the you are not completely satisitied, we will refund the
full cost of the Slug Control alteration. (We cannot guarantee the retention of slugs when clearance
exceeds 10% per side.) exceeds 10% per side.)

Ordering

Tayton Slug Control is easy to specity and orde. Simply add the information that is unique to your application to the die button catalog number.
Please specify XSC for alteration and show Prease specity SC for atieration and show
material thickness (inchess) and dlearance per side (percentage).

MOWTOORTER

For additionali information, contact your
(inches
Day

Regular Punches
Light outy

Regular Punches
Light Duty

Shank				ound		Shape						L																
D	Code	${ }_{\text {B }}^{\text {Leth．}}$	Min．	Range	$\mathrm{min}_{\substack{\text { min } \\ \text { xid }}}$		2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	Code	5.25	5.50	5.75	6.00	6.25	6.50	6.75	7.00
${ }_{2}^{2} 20$	${ }_{35}^{25}$	． 500		－ 0.02 －294	． 040		200																					
． 5700	50	． 1.750	．093	．125－374	． 0.053	－ 1857 －7．349														$\begin{aligned} & 37 \\ & 50 \\ & 50 \end{aligned}$								
． 6.75	${ }_{75}^{62}$	${ }_{\text {l }}^{\text {¢ }}$	${ }_{\text {l }}$	${ }_{\text {．} 437-749}^{\text {．} 21.64}$	${ }^{125}$			225	250	275	300	325	350	375	400	425	450	475	500	62 75 75	525	550	575	600	625	650	675	700
1．875	87 100	${ }_{\text {¢ }}^{\text {937 }}$	${ }_{\text {l }}^{\text {300 }}$		${ }_{2}^{235}$	． 375 －874																						
	25		． 040	． 093 －249																								
.375 .500	37 50		．059	． $1.185-374$	．059	${ }^{\text {d }} .1 .155-374{ }^{\text {d }}$														37 50								
． 625 7 750	${ }_{75}^{62}$	． 75	${ }^{125}$	${ }_{\text {l }}^{\text {．} 312 \text { 2－624 }}$	${ }^{125}$	${ }^{\text {cose－624 }}$		8225	8250	8275	3300	${ }^{8325}$	B350	B375	8400	8425	${ }^{8450}$	B475	8500	62 75	B525	B850	B575	B600	8625	B650	8675	B700
． 875	87		． 300	． 255	． 235	． 3755.874																						
				． 1255.374	． 080	－125－374																						
． 5000	50		． 0.093	．187－499		．187－499																						
． 750	75	1.00	${ }_{\text {．}}^{\text {2 }}$	${ }_{\text {l }}^{\text {．} 427 \text {－} 7.749}$	${ }_{\text {l }}{ }^{125}$	${ }_{\text {a }}^{\text {312－749 }}$		c225	C250	C275	c300	${ }^{\text {c325 }}$	C350	C375	C400	C425	C450	C475	C500	${ }_{75}^{62}$	C525	C550	C575	C600	C625	C650	C675	c700
1.875	87 100		${ }_{\substack{300 \\ .350}}$		${ }_{2}^{235}$	． 3757.874																						
$\stackrel{.625}{.750}$	${ }_{75}^{62}$	1.25	${ }_{2}^{1.158}$	${ }_{\text {l }}^{\text {312－624 }}$	${ }_{2}^{158}$				D250	0275	300	${ }^{\text {D325 }}$	D350	D375	D400	D425	D450	D475	D500	62 75	${ }^{5} 25$	D550	D575	D600	D625	D650	D675	D700
． 875	87		${ }_{\text {P }} .250$		． 235	．375．874												D475	D500	${ }_{87}$	D525	D550	D575					
	100																											

Standard Alterations

Regular punches are available in sizes other than
those shown in the chart o the eft． When ordering，you are asked to specify different designations tor various non－standard dimensions．
Fore example it the P and w Foro xample，if the e P and W dimensions are out－
side the standard range，an＂x x i is placed in front side the standard range，an＂X＂＂is placed in fron．
of the P or W dimension，e．g．，＂XP＂and or＂XW．
 nate＂XB＂as the point length．Also see＂Standard Atierations＂on the fronot of the pullout tab in
section for other speciail order designators．

Payton Progress Corporatio

XL

XLB

 $0 A^{\circ}$ | 0 | 4° |
| :---: | :---: |
| 25.37 | |
| 50 | 7.5° |
| 50 | |

 Seis ind liane dideneats
SBR Striatht Eetoro Radius

Standard Alteration
Regular Pilots-Light Duty

Surface Coatings
Some catalog products can be coated to increase harchnss,
feduce galing, and inporve wear andor cororosion resistance.
 DayTiNe XNT)-appied via PVD (physical vapor deposition).

 XNAProgress (XNAP)-ulta-hard PVD coating that absorbs
shear stress; provides excellent high-temperature resistance deal tors stamping where tools sare exposed to extreme stress

sional change
Vickers 3200

 ess
letion a ainest
Vickers 5000

$$
\begin{aligned}
& \text { - Daytrid } \\
& \text {-DayTiN }
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Daytino } \\
& \text {-DayTAN }
\end{aligned}
$$

XLB
 txample: LPr626 400, P327, w2, ws, XA 10

\section*{| \mathbf{D} | \mathbf{A}° |
| :---: | :---: |
| 25,37 | 5° |}

SBR Stianht Betore Radius

$\substack{\text { Example: } \\ \text { D=37 } \\==175}$

19

Dayton Progress Corporation

LPA

Material
Round P +
When $\mathrm{P}=\mathrm{D}$, shank tolerance applies.
Order any length shown. If you require a length between those shown, designate "XL.
Example: You require a length of 3.600 . Order 375 , then show XL 3.600. See "How to Order"
example on the next page. XL is available down to 1.375 . Note shank length limitation of 75 . (B length may be shorter than shown when XL is under the shortest length shown.)
There is no additional charge for XL .

Shank				Round			L													L						
D	Code	$\begin{aligned} & \text { Point } \\ & \text { Lgth. } \end{aligned}$	Min.	Range	*N		2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	Code	5.50	5.75	6.00	6.25	6.50	6.75	7.00
. 375	37	. 625	. 083	. $186-.375$. 37	. 2342	250	275	300	325	350	375	400	425	450	475	500	525	37	550	575	600	625	650	675	700
. 500	50	. 750	. 092	. $249-.500$. 50	. 3252													50							
. 625	62	. 875	. 124	. 311 - . 625	. 62	. 4162													62							
.750 .875	75 87	.937 .937	. 234	. $436-.750$.75 .87	. 5072													75 87							
1.000	100	. 937	. 349	.749-1.000	1.00	. 6892													100							
. 375	37	. 75	. 083	. $186-.375$. 37	. 2342	B250	B275	B300	B325	B350	B375	B400	B425	B450	B475	B500	B525	37	B550	B575	B600				
. 500	50		. 092	. $249-.500$. 50	. 3252													50				B625	B650	B675	B700
. 625	62		. 124	. $311-.625$. 62	. 4162													62							
$\begin{array}{r}.750 \\ .875 \\ \hline\end{array}$	75		. 234	. $436-.750$. 75	. 5072													75 87							
. 875	87		. 299	. $624-.875$. 87 1.00	. 69892																				
. 375	37	1.00	. 083	. 186 - . 375	. 37	. 2342	C250	C275	C300	C325	C350	C375	C400	C425	C450	C475	C500	C525		C550	C575	C600	C625	C650	C675	C700
. 500	50		. 092	. $249-.500$. 50	. 3252													50							
. 625	62		. 124	. $311-.625$. 62	. 4162													62							
. 750	75		. 234	. $436-.750$. 75	. 5072													75							
.875 1.000	87		. 299	. $624-.875$. 87	. 5982													$\begin{array}{\|c} 87 \\ 100 \end{array}$							
		1.25		.749-1.000	1.00	. 6892		D275		D325	D350	D375	D400	D425	D450	D475	D500	D525		D550				D650		
. 625	62		. 157	. $311-.625$. 62	. 4162			D300										62		D575	D600	D625		D675	D700
. 750	75		. 234	. $436-.750$. 75	. 5072													75							
. 875	87		. 299	. $624-.875$. 87	. 5982													87							
1.000	100		. 349	.749-1.000	1.00	. 6892													100							

Positive Pick-Up Pilots Light Duty

1

Surface Coatings
Some catalog products can be coated to increase hardness,
reduce galling, and improve wear and/or corrosion resistance. DayTride ${ }_{(1)}$ (XN)-a low-cost surface application that treats all exposed surfaces. Ideal for punches and die buttons.
high dimensional stability. Approx. hardness: RC65-73.
DayTiN® (XNT)-applied via PVD (physical vapor deposition).
Provides extreme hardness (hard as carbide) and excellent Provides extreme hardness (hard as carbide) and excellent
lubricity when used with a lubricant. Not recommended for stainless
2300.
DayTANTM (XAN)-ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance.
Ideal for HSLA, dual phase, and TRIP steels. Approx. hardness: *Vickers 3400 .
(harder th) Approx. hardness: *Vickers 3000 .
XNM-PVD, solid film. Produces lower coefficient of friction
than other coatings. Provides than other coatings.
ness: ${ }^{*}$ Vickers 2000.
XNP-the ultimate coating for extrusion and forming applications. Also works well in shaving operation
.0002 . Approx. hardness: *Vickers 3100 .
DayKool™ (XCR)-cryogenic steel conditioning process, used primarily with hard, thick materia
ness, and dimensional stability.
CrN (CRN)-excellent adhesion, high toughness, and good corrosion resistance. Primary applications are metal forming
(copper, brass, bronze), metal die casting, and plastic injection molding. Approx. hardness: *Vickers 1800-2100.
ZertonPlus ${ }^{\text {TM }}$ (XNA)-excellent wear resistance, thermal shock stability and hot hardness. Approx. hardness *Vickers 3200. XNAProgress (XNAP)—ultra-hard PVD coating that absorbs
shear stress; provides excellent high-temperature resistance. Ideal for stamping where tools are exposed to extreme stress
profiles. A good alternative to TD coating without the dimensional changes
*Vickers 3200 . Diamond Like Carbon Coating (XCD)-combines high hardness with an extremely low coefficient of friction. Good pro-
tection against abrasive \& adhesive wear. Approx. hardness
*Vick *Vickers

Code	Material
XN -DayTride ${ }^{\text {® }}$	M2 \& PS4
XNT -DayTiN ${ }^{\text {® }}$	M2 \& PS4
XAN - DayTAN ${ }^{\text {m }}$	M2 \& PS4
XCN -TiCN	M2 \& PS4
XNM	M2 \& PS4
XNP	M2 \& PS4
XCR - DayKool ${ }^{\text {TM }}$	M2 \& PS4
CRN	M2 \& PS4
XNA - ZertonPlus ${ }^{\text {TM }}$	M2 \& PS4
XNAP-XNAProgress	M2 \& PS4
XCD	M2 \& PS4

Punch Blanks Jektole \& Regular

Light Duty

Material
Steel: A2, M2, PS4, RC 60-63

Type	Shank		L																	$\begin{aligned} & \text { Jektolee } \\ & \text { Group } \end{aligned}$
	D	Code	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	
LJB	. 250	25	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	J3
	. 375	37																		J4
	. 500	50																		J6
	. 625	62																		J6
	. 750	75																		J9
	. 875	87																		J9
	1.000	100																		J9

Type	Shank		L																				
	D	Code	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25	6.50	6.75	7.00
LPB	. 250	25	200	225	250	275	300	325	350	375	400	425	450	475	500	525	550	575	600	625	650	675	700
	. 375	37																					
	. 625	62																					
	. 750	75																					
	.875 1.000	87																					

*See p. 39 for additional information.

HOW TO ORDER

Specify:	Qty.	Type	D Code	L	Steel
Example: 12	LJB	50	300	M2	

Material

Steel: A2, M2, RC 60-63 Round $\mathrm{P}{ }^{+.00000}$ Shape P, W $\pm .0005 \bigcirc 10001$ P to D

- Check your P\&W dimensions
not exceed the maximum shown.

Type	Shank		$\begin{gathered} \text { Point } \\ \text { Lgth. } \\ \text { B } \end{gathered}$	RoundRange P	Shape		L									$\begin{gathered} \text { Jektolee } \\ \text { Group } \end{gathered}$
	D	Code			$\begin{aligned} & \text { Min } \\ & \text { XW } \end{aligned}$	$\operatorname{Min}_{W} \operatorname{Max}_{\mathrm{P} / \mathrm{G}}$	2.50	2.75	3.00	3.25	3.50	3.75	4.00	4.25	4.50	
	. 375	37	62	. 376 - . 875	. 062	. $125-.875$										J4
LZ- Jektole ${ }^{\text {e }}$. 500	50	. 75	.501-1.250	. 158	.188-1.250										J6
	. 7525	62	. 88	.626-1.500	. 158	.250-1.500	250	275	300	325	350	375	400	425	450	J6
	. 875	87	. 94	. 876 -1.750	. 235	.375-1.750										J9
	1.000	100	. 94	1.001-1.750	. 235	.437-1.750										J9

*See p. 39 for additional information.
 Alternate locations of $0^{\circ}, 180^{\circ}$, or 270° can be specified at no additional cost. Custom Ball Seat Locations
Custom Ball Seat Locations can b Custom Ball "eat Locations can be
specified as "BS" and degrees counter-
 information, see "Locking Devices" on p. 40.
Double Ball Seat
A second ball seat may be specified Normally located 180° from the primary sharpening of notching punches by rotating the punch 180°. Specify "SB" and degree desired. A second ba can also be locate.
primary ball seat.
Not recommended for diameters Not recommended for diameters
under .625 for LZ _ and .500 for LK

Standard Alterations

Point Larger than Shank Ball Lock punches are available in sizes other than those shown in the chart above.
When ordering, you are asked to specify different designations for various non-standard dimensions For example, if the P and W dimensions are outside the standard range, an " X " is placed in front of the P or W dimension, e.g., "XP" and/or "XW." If the point length is other than standard, designate " XB " as the point length. Also see "Standard Alterations" on the front of the pullout tab in this section for other special order designators.

Surface Coatings

 Some catalog products can be coated to increase hardness,reduce galling, and improve wear and/or corrosion resistance DayTride® (XN)-a low-cost surface application that treats all exposed surfaces. Ideal for punches and die buttons. Provides high dimensional stability. Approx. hardness: RC65-73.
DayTiN® (XNT)-applied via PVD (physical vapor deposition). Provides extreme hardness (hard as carbide) and excellent lubricity when used with a lubricant. Not recommended for stainless steel, copper, or nickel. Approx. hardness: *Vickers 2300.

DayTANTM (XAN)-ultra-hard, high-aluminum PVD coating. Absorbs shear stress and provides high temperature resistance,
Ideal for HSLA, dual phase, and TRIP steels. Apror *Vickers 3400 .
TiCN (XCN)-very hard PVD, thin film. Provides ultra hardnes (harder than carbide) and superior abrasive wear resistance. Approx. hardness: *Vickers 3000 .
XNM—PVD, solid film. Produces lower coefficient of friction than other coatings. Provides excellent lubricity. Approx. hardness: *Vickers 2000.
XNP-the ultimate coating for extrusion and forming applica ions. Also works well in shaving operations. Tolerance is

DayKool™ (XCR)-cryogenic steel conditioning process, used primarily with hard, thick materials. Improves strength, toughness, and dimensional stability
CrN (CRN)-excellent adhesion, high toughness, and good (copper, brass, bronze), metal die casting, and plastic injection molding. Approx. hardness: *Vickers 1800-2100. moling. Approx. harrness. Wickers 1800-2100
ZertonPlus ${ }^{\text {TM }}$ (XNA)-excellent wear resistance, thermal shock stability and hot hardness. Approx. hardness *Vickers 3200 . XNAProgress (XNAP)-ultra-hard PVD coating that absorbs shear stress; provides excellent high-temperature resistance. profiles. A good alternative to TD coating without the dimensional changes associated with that process. Approx hardness: *Vickers 3200
Diamond Like Carbon Coating (XCD)-combines high hardness with an extremely low coefficient of friction. Good prolection against abrasive \& adhesive wear. Approx. hardnes *Vickers 5000.

Code	Material
XN -DayTride ${ }^{\text {® }}$	M2 \& PS4
XNT - DayTiN ${ }^{\text {® }}$	M2 \& PS4
XAN - DayTAN ${ }^{\text {™ }}$	M2 \& PS4
XCN - TiCN	M2 \& PS4
XNM	M2 \& PS4
XNP	M2 \& PS4
XCR -DayKool ${ }^{\text {TM }}$	M2 \& PS4
CRN	M2 \& PS4
XNA -ZertonPlus ${ }^{\text {™ }}$	M2 \& PS4
XNAP-XNAProgress	M2 \& PS4
XCD	M2 \& PS4

* Vickers used when RC exceeds 80

Vickers used when RC exceeds 80.
© Daytride and D ayyit are registered rademarks of Dayton Progress.
TM DayTAN, DayKoot, and ZertonPlus are trademarks of Dayton Progress.

Standard Alterations
Point Larger than Shank-Light Duty

LL $\begin{aligned} & \text { Precision Overall Length } \\ & \text { Same as XL except overall }\end{aligned}$

WS Whistle Stop See table for standard angles. The Whistle Stop alteration is ground throught the ball seat, subjijct to the same limitations as othe
standard and ustom bal seat cotions. standard and custom ball seat locations. Example: LZX75 400, P1.250, M2, WS, XA 10°
LKR75 400, P1.250, W. $350, \mathrm{M} 2, \mathrm{WS}, \mathrm{XA} 10^{\circ}$

\mathbf{D}	\boldsymbol{A}°
37	5°
50	7.5°
$62-100$	10°

Angles of 5° and 7.5° also avaiable on .625 and larger diameters.
(Specifiy XA and angle after WS.)

$$
\text { nath is held to } \pm 00
$$

> -
都

Die Buttons
 ${ }_{\text {Ball }}^{\text {Die }}$ But

Die Buttons
Press Fit

Material Steel: A2,
 Round $\mathrm{P} \pm$ =ome

Body				Round	Shape	
D	code	Min.	Max.	Range	Min. Mide	1.187
. 5000	50	. 156	. 228	. 064 - 195	. 048 - -195	118
${ }_{\text {l }}^{\text {. } 7550}$	${ }_{75}^{62}$	${ }_{.1}^{187}$	${ }_{.375}^{.312}$	-1.196-.345	$\xrightarrow{0.0945-285}$	${ }_{118}^{118}$
	87	. 187	${ }^{4} 468$. 286 - 435	. 125 - 435	118
1.0000	100	. 250	. 578	. $346 .-545$. 125.545	18
1.2500	125	. 250	. 68	. 436 - 655	. 187.655	118
	150	. 250	${ }^{812}$. 546		${ }^{118}$
	${ }^{175}$		1.062	656-1	1871.035	118

LDX LDO giplat LDR LDK LDH

LDJ LDN LDV LDY LDZ Material
Steel: A2, M

mow Topinas

Howtoobena

Dayton Slug Contro Dayton Slug Control is a
guaranteed method for re guaranted method for reducing
he risk of pulling sluss to the die
surface during withdrawal of the surface during withdraraval of the
punch. A series of groves is punch. A series of grooves is
designed inside the die button.
There, the suss are traped
There, the sluss are trapped until they fall freely
hrough the elief. The sue of Dayton Slug hrough he feter. . The use ond Dyiton Slug Control
has no effect on hole size, and will not require any han no efiect on hole size, and will in
Our guarante: Use Dayton Slug Control in a stamping die now pulling slugs. If, for any reason,
you are not completely satisfied, we will retund the you are not completely satissied, we will refund the
full cost of the Slug Control alteration. (We canno fulc cost of the slug Control alteration. (We canna
guarantee the retention of sluss when clearance
exceeds 10% pers side.)

Ordering
Dayton Slug Control is easy to specify and order. mplication to the the die tition that is unique to your application to the die button catalog number.
Please specify XSC for alteration and show Peaase specity y Sc for alteration and show
material thickness (inches) and clearance per
side (erecentage) side (percentage).

Tow Tobinir

or additional information, contact your
For additional into
Dayton distributo.

XSC Suy Contro) iliminates sulupuling
 \square

 See p. 38 for Die Button Blanks.

True Position Retainers Heavy Duty/Light Duty

Features/Benefits

The in-line dowel assures precise punch-t-o-die button aligmenent sitiving y
higher quality parts, Ionger punch life, higher quality parts, longer punco life,
and reduced production downtime. The True Position Retainer eliminates hand fitting, cutting mounting time by
nearly 50%, Simply pull the retainer from nearly 5%. Simply pull the e etainer from
its box, and screw it it ito the die set.
tT Tre Pox and scriew ives you true dimensiona
Trcuracy every time. Occuracy every ime.
 by up to $5 \% \%$. Shapeed dunches use the
secondary dowe for preise alignent.

Standard Jackscrew Hole Jackscrews make it
easier to pull retainers easier topuli retain
off the dowels. Special Size Special Size
Any amount of material
can be removed trom the can be removed from the
sides of the retaine for sides of the retainer tir
a custom size. Edge
are saw cut $\pm .03$. are saw cut $\pm .03$. Clearance Holes
Clearance holes or Clearance holes or
tapped holes can tapped holes can
be detailed as
shown in the order shown in the
example. example. diriled
Holes are
through the e etaine through the e etaine
unless otherwise
specified. specified Location $\pm .010$
Diameter +.0 .050

The following alterations require
detailed drawings:
Notches
Nothesestoclear
othertooling an be
added to any side of $\square \square \square \square \square \square \square \square$ added to any side of
the retainer. Notches

Angles
As with notches,
angles can be add angles can be added
to clear other tooling in to cleara ther toolit
the die. Angles ar
saw cut ± 03

True Position ${ }^{\circ}$ Retainers

Specify:	Oty.	Code	D
Example:	23	HRTB	37

Back Plate	Code	D	A	B	G	K	R	S	U	X	Y	Screw Size
HRTB	37	.3750	1.75	1.72	.438	.750	.38	.47	1.060	.354	.295	$5 / 16-18$
HRTB	50	.5000	2.00	1.97	.562	.750	.50	.60	1.180	.472	.256	$3 / 8-16$
HRTB	62	.6250	2.12	2.09	.625	.750	.56	.66	1.250	.532	.236	$3 / 8-16$
HRTB	75	.7500	2.38	2.34	.688	.750	.69	.79	1.320	.650	.197	$3 / 8-16$
HRTB	87	.8750	2.50	2.47	.688	.750	.75	.85	1.400	.728	.197	$3 / 8-16$
HRTB	100	1.0000	2.75	2.72	.781	.938	.88	.97	1.600	.866	.276	$1 / 2-13$
HRTB	125	1.2500	2.75	2.72	.781	.938	.88	.97	1.600	.866	.276	$1 / 2-13$

Features/Benefits
HRTB True Position ${ }^{\oplus}$ Retainers come complete with an integrated, hardened backing plate. With all the features of the original True Position ${ }^{\oplus}$ Retainer, the True Position ${ }^{\circledR}$ gives you true dimensional accuracy each and every time!

Features/Benefits
Dayton EZ Fit ${ }^{\text {TM }}$ Ball Lock Retainer Inserts give you the ability to build, reconfigure, and custom-make retainers in-house as die specifications change. In addition, the unique single-piece teardrop shape, combined with both a
straight and an angled wedge side, holds your ball lock punch securely in place. EZ Fit ${ }^{\text {TM }}$ reduces costs and downtime-and simplifies tooling changeover.

The shape shown above can be easily cut using wire EDM to
assure a proper fit. The insert (utilizing both the straight and 8°
angled sides) fits securely and is angled sides) fits securely and is
designed to clear the retainer by a small amount, making assembly and disassembly easier. Each insert comes complete with
wire cutting instructions that show recommended dimensions and tolerances for optimum performance.

Ez Fft' Retainer Inserts

Tighter Tolerances Dayton EZ FitTM Retainer
Inserts utilize a patented, state-of-the-art design that assures tighter, more precise toler
ances than other retainer inserts on the market. The unique teardrop shape provides receptacle for the punch. One side of the piece (the flat side) is cut at an 8° angle to create a wedge shape. The hole in the retain
wire cut to create a snug fit. (See cutaway.) EZ Fit ${ }^{\text {TM }}$ Retainer Inserts are also ideal for repairing or making engineering changes.
Repair/Engineering Changes When job specifications change, the location(s) of the punches in the die set change, and reconfigured
retainers are required. This means ordering new retainers or modifying existing retainers in-house This can slow the process; often requires specialized equipment and knowledge; and the int
original retainer can be compromised. Now-with the help of the all-new Dayton EZ Fit ${ }^{T M}$ Ball Lock Retainer Insert-this process can be the cost of replacing existing retainers.

In-house Modifications
To retrofit the EZ FitTM Insert, simply wire cut the hole to the specified size and install. (See instructions at
www.daytonlamina.com/ezfit for EDM wire cutting.) The process is quick, easy, effective, and far less expensive than part replacement costs.

End Retainers
 Heavy Duty/Light Duty

Catalog Number					
Type	\mathbf{D}	\mathbf{L}	\mathbf{E}	Screw Size	
HRS	.5000	1.88	.562	$3 / 8 /-16$	
	.6250	2.00	.625	$3 / 816$	
	.7500	2.12	.888	$3 / 816$	
	.8750	2.38	.750	$1 / 2-13$	
	1.0000	2.38	.550	$1 / 21-13$	
	1.2500	2.62	.812	$1 / 2-13$	

Note: Screw and Dowel Locations $\pm .005$.

Reflected View Punches and Guides
웅ㅇㅇㅇ
The reflected view is used for punches and guides.
It is the view as seen in a mirror held below a punch It is the view as seen in a mirror held in iow a pung
or guide in its operating position. It is the same as a plap view from the heacd dend. in which hthe eoont
shap is shown doted. A reflected view is shown shape is shown d
with solid lines.
Orientation and Locking Locking
The locking device orientation
is sandard at oro. For types of
locking methods and custom

Clearance

34
 Form Punch Shapes

Dayton Progress Form Punches are available on ound punches (i.e., those esignated as standard " X esignated as stand
When ordering, change "X" designator to a "W. addition, specify other dimensions, as shown in

IOW To ORDER
 Specity: Oty. Type Code L Steel W Shape P PP LA Alterations
 $\begin{array}{llllllllllll}\text { Example: } 2 \text { HPW } & 50 & \text { B350 } & \text { M2 } & \text { W201 P. } 1875 & \text { PP. } 1250 & \text { LA2 } 235 & \text { XNT }\end{array}$
 " P " is the point dimension of the product. The "P" dimensions are not shown below.
 When "P" = "D," shank tolerance applies.

Form Punch Shapes

Form Die Button Shapes

Dayton Die Buttons are available for all the Form Punches shown here, i.e. round punches designated as standard " X " shaped punches. When ordering, please
change the " X " designator to "W." Die Buttons are available as headed or headless with a counterbore relief, or as headed or headless with a tapered relief.

B (Land Length) will be per catalog standard, unless XB is ordered. O.A.
will be held to LL tolerance, i.e., .00

HOW To OBDER
Specity: Oty Typa $\begin{array}{lcccccccccccc} & \text { aty. Type } & \text { Code } & \text { LL } & \text { Steel } & \text { W Shape } & \text { P } & \text { PP } & \text { LA } & \text { RS } & \text { RF } & \text { AN } & \text { Alteration } \\ \text { Example: } & 4 & \text { LDW } & 125 & 118 & \text { M2 } & \text { W935 } & .50 & .625 & .15 & .05 & .03 & \\ \text { XNT }\end{array}$

Accessories

Retainers

HOW TO ORDER

Specify:	Qty.	Product \#
Example:	150	813109 (Ball for HRT with .3750 dia.)
	28	81700 (Dowel for HRS)
	43	573876 (Spring for LRE with .2500 dia.)

Catalog Number	Shank Diameter In Inches	Max. Point Length
$\mathbf{8 1 8 0 9 7}$.250	1.12
$\mathbf{8 1 8 1 1 9}$.375	1.31
$\mathbf{8 1 8 1 2 7}$.500	1.56
$\mathbf{8 1 8 1 3 5}$.625	1.56
$\mathbf{8 1 8 1 4 3}$.750	1.56
$\mathbf{8 1 8 1 5 1}$.875	1.56
$\mathbf{8 1 8 1 7 8}$	1.000	1.81
$\mathbf{8 1 8 1 8 6}$	1.250	1.81

Punch Pullers

Dayton Punch Pullers simplify and speed the removal of ball lock punches from retainers. You no longer have to improvise with vise grips or other tools that can slip from the punch, making removal difficult or hazardous.
Dayton Punch Pullers are made of high-grade alloy steel and are heat-treated and precision machined for long, reliable service. Dayton Punch Pullers, which can improve performance and save downtime, are available in shank sizes from .250" to $1.250^{\prime \prime}$.

HOW TO ORDER

$$
\begin{array}{lcl}
\text { Specify: } & \text { Qty. } & \text { Product \# } \\
\text { Example: } 3 & 818097 .(250 \text { shank diameter } \\
& & \text { with } 1.12 \text { max point length) }
\end{array}
$$

Removes ball lock punches quickly and easily

Ball Release Tools

Cat. No. 818046

Cat. No. 818054 Light Duty Cat. No. 818062 Heavy Duty

(for True Position ${ }^{\circledR}$ Retainers)

Shim/Backing Plate

HOW TO ORDER

Specify:	Qty.	Product \#
Example:	2	URSP 1318

	Thickness T	
\mathbf{D}	$\mathbf{. 1 8 9}$ (Rc54-56)	$\mathbf{. 0 7 1}$ (Soft)
$\mathbf{2 5}$	URBP 1048	URSP 1018
$\mathbf{3 7}$	URBP 1048	URSP 1018
$\mathbf{5 0}$	URBP 1348	URSP 1318
$\mathbf{6 2}$	URBP 1648	URSP 1618
$\mathbf{7 5}$	URBP 2048	URSP 2018
$\mathbf{8 7}$	URBP 2248	URSP 2218
$\mathbf{1 0 0}$	URBP 2548	URSP 2518
$\mathbf{1 2 5}$	URBP 3248	URSP 3218

EDM Die Button Blanks

HOW TO ORDER

Specify:	Oty.	Type	D Code	L	P	Steel
Example:	6	KDE	37	100	XP. 020	M2
	5	KDU	50	112		M2

Standard "P" will be provided, unless otherwise specified.

Body		K_U		K_E												
Dia.	Std. P	Optional XP		Std. P	Optional XP		B	R	. 75	. 87	. 93	1.00	1.125	1.25	1.375	1.50
. 2500	. 031	. 020	-	. 031	. 020	-	. 15	. 156	75	87	93	100	112	125	137	150
. 3125	. 031	. 020	-	. 031	. 020	-	. 25	. 191								
. 3750	. 031	. 020	-	. 031	. 020	-	. 25	. 228								
. 4375	. 031	. 020	-	. 031	. 020	-	. 25	. 281								
. 5000	. 062	. 020	-	. 031	. 020	-	. 25	. 312								
. 6250	. 062	. 020	. 031	. 093	. 020	. 031	. 25	. 391								
. 7500	. 062	. 020	. 031	. 093	. 020	. 031	. 31	. 468								
. 8750	. 062	. 020	. 031	. 093	. 020	. 031	. 31	. 578								
1.0000	. 062	. 020	. 031	. 093	. 020	. 031	. 31	. 703								
1.2500	. 062	. 020	. 031	. 125	. 020	. 031	. 37	. 828								
1.5000	. 062	. 020	. 031	. 125	. 020	. 031	. 37	1.093								
1.7500	. 125	. 020	. 031	. 125	. 020	. 031	. 37	1.430								
2.0000	. 125	. 020	. 031	. 125	. 020	. 031	. 37	1.630								
2.2500	. 125	. 020	. 031	. 125	. 020	. 031	. 37	1.830								
2.5000	. 125	. 020	. 031	. 125	. 020	. 031	. 37	2.030								
2.7500	. 125	. 020	. 031	. 125	. 020	. 031	. 37	2.230								

Features/Benefits

Select either round KDU EDM Die Button Blanks or round KDE Die Button Blanks. Relief hole (R) provides sufficient clearance for slug removal during the stamping process in both types.
KDU Blanks are provided with a small straight through hole. They are commonly used for wire and vertical EDM operations. There are two key advantages with this type of blank: in wire cutting, a tapered relief can be cut instead of a round straight relief; in conventional EDM applications, you can customize the size of the relief to the shape you are cutting.

KDE Blanks are used with conventional (vertical) EDM machines. The hole (P) is used to introduce dielectric to the spark gap for flushing away eroded particles of steel. For the fastest delivery, use the standard (P) dimension given in the chart. If an optional (P) dimension is desired, simply specify "XP," and indicate the dimension.

Jektolé Data

The Engineered Clearance

Perforating punch-to-die button clearances in metal stamping dies has been universally expressed as a percentage of stock thickness, and for clarity should be articulated as percent per side ($\Delta=$ clearance per side).

Standard practice has called for $\Delta 5 \%$, and is commonly known as "regular clearance." Regular clearance has been applied almost universally to all applications involving the perforation of ferrous materials.

Jektole ${ }^{\circledR}$, the Engineered Clearance, is approximately twice regular clearance, i.e., $\Delta 10-12 \%$. This means greater productivity, improved maintenance, and a better return on your tooling investment.

In addition, clearances of up to $\Delta 50 \%$ are not uncommon with some hard materials. Clearance tests have been performed by Dayton Progress to prove that increasing the clearance does not lessen hole quality-a common thought by some designers and engineers. Dayton clearance tests do, in fact, prove that the Jektole ${ }^{\circledR}$ Engineered Clearance provides many advantages and benefits.

Jektole Components

Jektole ${ }^{\circledR}$ In Production

- Requires less press tonnage
- Reduces the pressure required to strip the punch, which, in turn, reduces punch wear
- Produces minimal burr
- Doubles—often triples-piece output per grind
- Reduces total punch costs

Jektole ${ }^{\circledR}$ In Maintenance

- Keeper Key holds pin in retracted position (see photo at left)
- Eliminates the need for disassembly before grinding
- Helps maintain proper pin extension
- Reduces downtime for regrinding

Standard Jektole ${ }^{\circledR}$ Data							
DIMENSION		J2*	J3	J4	J6	J9	J12
Std. Shank Dia.	D	. 250	. 250	. 375	$\begin{aligned} & .500 \\ & .625 \end{aligned}$	$\begin{array}{r} .750 \\ .875 \\ 1.000 \end{array}$	1.250
Point Hole Dia.	C	. 020	. 032	. 046	. 063	. 094	125
Shank Hole Dia.	E	. 086	. 109	. 141	. 172	. 221	. 275
Pin Extension		. 030	. 030	. 060	. 060	. 060	. 060
Keeper Key No.	920045				920053		**

Jektole ${ }^{\circledR}$ Design Limits								
DIMENSION	J2	J3	J4	J6	J9	J12		
Min. Shank Dia. (Light Duty)	D	.250	.250	.375	.500	.750	.875	
Min. Shank Dia. (Heavy Duty)	D	.375	.375	.375	.500	.750	.875	
Min. Point Dia.	P	.040	.064	.092	.126	.188	.250	
Max. Point Lgth.	B	1.25	1.50	1.62	1.62	1.62	1.62	

Universal Jektole ${ }^{\circledR}$ Components							
EJECTOR PINS	J2	J3	J4	J6	J9	J12	
Overall Length	L	1.11	1.38	1.94	1.94	2.22	2.22
Pin Diameter	D	.017	.027	.041	.058	.089	.120
Head Diameter	H	.048	.073	.094	.120	.156	.188
Hd. Thickness	T	.031	.047	.062	.062	.094	.094
SPRINGS		J2	J3	J4	J6	J9	J12
Outside Dia.	D	.081	.104	.136	.167	.216	.270
Free Length	L	2.38	2.38	3.19	3.00	3.03	2.56
Pressure (12Preload)	Ibs.	.5	.75	1	1.5	2	2.5
SCREWS		J2	J3	J4	J6	J9	J12
Screw Size	D	$\# 3-48$	$\# 5-40$	$\# 8-32$	$\# 10-32$	$1 / 4-28$	$5 / 66-24$
Screw Length	L	.19	.19	.19	.19	.25	.25

Locking Devices

Orientation

The standard ball seat location is at 90°. Alternate locations of $0^{\circ}, 180^{\circ}$, or 270° may be specified at no extra cost. Custom ball seat locations may be specified as "BS" and at the degree required counter-clockwise from 0°.

(See drawing on right.)

Views

A plan view is used for the die button, and a reflected view is used for the punch. The reflected view, a mirror image (see p. 32, "Classified Shapes"), simplifies orientation: All locking devices are in the same position.
Identify as "reflected view" on the punch drawing.

How to Specify

This page shows the most common locking devices available for press-fit die buttons-single flat, double flat, and dowel. Select the type, then add the code to the component description. (See "how to order" box on right.)

Single Flats X2, X5, X8, X9

The standard key flat locking device is at 0°. Specify "X2" (bottom) or "X8" (top) for die buttons. Alternate locations of $90^{\circ}, 180^{\circ}$, or 270° may be specified at no additional cost. Specify "X2" or " X 8 " and the degree required. Example: X2—90

Custom Location

Specify "X5" (bottom) or "X9" (top) and the degree required counter-clockwise from 0°. Example: X5-135 ${ }^{\circ}$.

Double Flats X3, X6

The double key flat locking device is at 0°. Specify " X 3 " for die buttons. Alternate locations of $90^{\circ}, 180^{\circ}$, and 270° may be specified at no additional cost.
Specify " X 3 " and the degree required.
Example: X3-90․

Custom Location

Specify "X6" for die buttons and the degree required counter-clockwise from 0°.
Example: X6-135 ${ }^{\circ}$.

F Dimension for Flats

for Press-Fit Die Buttons

Body Dia.	25	37	50	62	75	87	100
F	.110	.165	.220	.270	.325	.380	.435
Body Dia.	125	150	175	200	225	250	275
F	.540	.650	.775	.900	1.025	1.150	1.275

Location Tolerance

Flat		Dowel	
F	Radial	F	Radial
+.0005	$.001 /$	+.0005	$0^{\circ}-4^{\prime}$
-.0000	inch	-.0000	

HOW TO ORDER						
Specify:	Qty.	Type	D Code	P (or P\&W)	Steel	Alteration
Example:	5	KDO	$87-100$	P.394, W.209	A2	X2
	9	KDR	$50-125$	P.275, W. 092	M2	X83

Additional Flat For Punches and Die Buttons

The depth of the flat is taken from the shank, not the head,
 on punches.

	Code	Depth	Length
	X81	. 060	. 500
	X82	. 060	. 625
	X83	. 060	. 750
	X84	. 060	Full Length
	X85	. 093	. 500
	X86	. 093	. 625
	X87	. 093	. 750
	X88	. 093	Full Length
	X89	Specify Dimensions	
	X91	. 060	. 500
	X92	. 060	. 625
	X93	. 060	. 750
	X94	. 060	Full Length
	X95	. 093	. 500
	X96	. 093	. 625
	X97	. 093	. 750
	$\begin{aligned} & \text { X98 } \\ & \text { X99 } \end{aligned}$.093 Spe	Full Length sions

Dowel Slots X0, X1 ${ }^{\text {T, }} \mathbf{X 4 , ~ X 7 , ~ X 4 1 , ~ X 7 1 ~}$
The standard dowel locking device is at 0°. Specify "X4" (. 125 dowel) or "X41" (. 1875 dowel) for die buttons. Specify "X0" ($F=.5 \mathrm{D}$) for die buttons only.

Alternate locations of $90^{\circ}, 180^{\circ}$, or 270° may be specified at no additional cost. Specify " $X 0$," " $X 4$," or " $X 41$ " and the degree required.
Example: X4-90 ${ }^{\circ}$.

Custom Location

Specify "X7" (. 125 dowel) or "X71" (. 1875 dowel) for die buttons. Specify " X 1 " ($\mathrm{F}=.5 \mathrm{D}$) for die buttons only. Specify "X1," "X7," or "X71," and the degree required counter-clockwise from 0°.
Example: X71-135 ${ }^{\circ}$.
F Dimension for Dowels for Press-Fit Die Buttons

Body Dia.		25	31	37	43	50	62-275
X0*, X1*	F	. 1250	. 1562	. 1875	. 2188	. 2500	D/2
X4, X7		. 1625	. 1875	. 2125	. 2375	. 2625	D/2
X41, X71		. 1938	. 2188	. 2438	. 2688	. 2938	D/2

Order example:
X0, X1, X4, \& X7 - . 1250 Dowel X41 \& X71 - . 1875 Dowel

[^1]
Urethane Strippers

Features/Benefits

Dayton's durable, yet flexible, Urethane Strippers provide superior stripping over conventional strippers; develop higher load-bearing capacity due to the use of a unique curing agent; are tear- and oil-resistant; provide exceptional dampening of the punch, thus eliminating premature punch failure due to vibration; and are easy to install and replace.
Strip-shape Dayton Urethane Strippers assure positive stripping and dampen punch vibration by gripping around the punch point. The closed-end feature holds the thin stock flat during the stripping cycle, and helps eliminate the potential for rejected parts.

Air Hole	I.D.
$1 / 16$	$3 / 16-1 / 4$
$3 / 32$	$5 / 16$
$1 / 8$	$3 / 8-1$

Catalog Number	I.D.	O.D.	L	Pressure at Deflection of		
				1/8	1/4	$3 / 8$
USE18-125	3/16	11/16	11/4	250	400	-
USE18-150			11/2	230	350	-
USE25-125			11/4	280	475	-
USE25-150	$1 / 4$	$3 / 4$	$11 / 2$	275	465	-
USE25-175			$13 / 4$	220	375	490
USE31-125			$11 / 4$	320	500	
USE31-150	5/16	13/16	$11 / 2$	300	450	-
USE31-175			13/4	270	400	575
USE31-200			2	240	370	600
USE37-125			$11 / 4$	420	695	
USE37-150	$3 / 8$	7/8	11/2	385	625	-
USE37-175			$13 / 4$	355	575	760
USE37-200			2	310	515	670
USE50-125			11/4	520	790	-
USE50-150			11122	450	725	-
USE50-175	1/2	1	13/4	435	680	875
USE50-200			2	315	510	650
USE50-225			21/4	275	475	600
USE62-125			11/4	600	925	-
USE62-150	5/8	1/1/8	11/2	520	835	-
USE62-175			13/4	480	775	1000
USE62-200			2	440	730	935
USE75-175			13/4	500	800	1200
USE75-200			2	400	700	1100
USE75-225	$3 / 4$	11⁄2	21/4	350	650	1000
USE75-250			21/2	325	600	900
USE75-275			23/4	300	550	800
USE87-175			$13 / 4$	1500	2200	3400
USE87-200			2	1200	1900	2800
USE87-225	7/8	13/4	21/4	1150	1850	2400
USE87-250			21/2	900	1450	1900
USE87-275			23/4	850	1350	1800
USE100-175			$13 / 4$	2000	3000	3500
USE100-200			2	1600	2600	3400
USE100-225	1	2	21/4	1400	2300	3200
USE100-250			21/2	1200	2000	3000
USE100-275			23/4	1000	1800	2800

HOW TO ORDER

Specify: Qty. Type I.D. L
Example: 12 USE 37125

Shear Angles

Shear Angles can be applied to all punch points. These angles are used primarily to reduce slug pulling. Single and Double Shears can be used to reduce the punching force as well as minimize slug pulling. These alterations are prepriced and do not add to the standard delivery of the product.

Shear Angles are also available on Classified Shapes, but are available as special order only.

Standard ball seat location is at 90°.

Simply add the alteration code shown next to the drawings, and the angle desired, to your punch catalog number. Tolerance on all angles is ± 15 minutes.

LL not available on XS19, XS21, XS22, and XS23.

HOW TO ORDER

| Type | Code | L | P (or P\&W)
 HPL
 100 | C 350 | P.872, W. 401 |
| :---: | :---: | :---: | :---: | :---: | :---: | | Steel |
| :---: |
| A2 |\quad| Alteration |
| :---: |
| XS23 A3 |

For Round Punches Only

XS19 Nail Point

XS20 chamfer

For Round \& Shape Punches

XS21 conical

XS22 Double Shear

XS23 Single Shear

XS24 Single Shear Angle with Flat

Shown as reflected view.

VersaPlus Premium Products

PUNCHES

Standard features on all Dayton VersaPlus ${ }^{\circ}$ punch products include precision concentricity between the point and the shank (resulting in better punch and die alignment); a supersmooth finish on the point (resulting in less galling and reduced maintenance costs); and state-of-the-art-coatings that provide superior hardness.

Jektole ${ }^{\circ}$ Punches

VersaPlus ${ }^{\circ}$ Jektole ${ }^{\circ}$ Punches permit doubling punch to die button clearance; produce up to three times (or more) the number of hits between sharpenings; and reduce burr heights.

Regular Punches

VersaPlus ${ }^{\circ}$ Regular Punches provide three times better alignment than other major brands; offer longer tool life; and can significantly improve finished part quality.

Straight Punches

VersaPlus ${ }^{\ominus}$ Straight Punches-Jektole ${ }^{\bullet}$ and Regular-are available in a wide range of sizes; can be designed and formed to accommodate your specific punching needs; and provide longer die runs, less downtime, and reduced maintenance costs.
${ }^{\circledR}$ VersaPlus is a registered
trademark of Dayton Progress.
Plus
ntric-
sulting
uper-
ind
uns

PILOTS

Standard features on all Dayton VersaPlus ${ }^{\ominus}$ pilots include smoother pickup action; less hole distortion; and state-of-the-art coatings to provide superior hardness.

Regular Pilots

VersaPlus ${ }^{\star}$ Regular Pilots are built to exact tolerances; the parabolic point shape allows for smooth pickup action; and pilots offer a wide range of unique punching and fabricating applications.

Positive Pick-Up Pilots

VersaPlus ${ }^{\circ}$ Positive Pick-Up Pilots provide smoother pick-up without the risk of distorting the hole; in addition, the unique design moves the stock farther than conventional pilots.

If optimum performance is a MUST, this may be the only punch you'll ever need!

> VersaPlus® sets the new industry standard for high-performance punches and pilots. VersaPlus® means less downtime, longer production runs, and better value for your stamping dollar.

Commitment to Quality \& Customer Satisfaction

Dayton Lamina is a leading manufacturer of tool, die and mold components for the metal-working and plastics industries. As a customer-focused, world-class supplier of choice, we provide the brands, product breadth, distribution network and technical support for all your metal forming needs.

Our goal is to give our customers the most innovative and valueadded products and services.

DAYTON Lamina"'
 a MISUMI Group Company

*Dayton Lamina's line of Danly products is available only to North America.

[^0]: ${ }^{\circledR}$ Jektole and True Position are registered trademarks of Dayton Progress Corporation.
 ${ }^{\text {TM }}$ Multi-Position, EZ Fit, and all Triliteral Designators are trademarks of Dayton Progress Corporation.

[^1]: * Available on headless die buttons only

