TECHNICAL DATA

●INTERNATIONAL SYSTEM OF UNITS (SI)	1111
●HARDENING AND HARDNESS TESTS	1113
CONVERSION TABLE OF HARDNESS SURFACE ROUGHNESS	1115
●METHODS OF INDICATING PRODUCT SURFACES IN DRAWINGS	1116
●SURFACE ROUGHNESS BY DIFFERENT MACHINING METHODS	1117
●INDICATIONS OF GEOMETRICAL TOLERANCE ON DRAWINGS	1118
●BASIS OF SELECTION FOR FITS	1119
● DIMENSIONAL TOLERANCES AND FITS	1120
●TOLERANCES OF REGULARLY USED HOLE FITS·······	1121
●TOLERANCES OF REGULARLY USED SHAFT FITS ·······	1122
●GENERAL DIMENSIONAL TOLERANCES FOR PARTS FORMED BY PRESS WORKING	
FROM SHEET METAL AND SHEAR FROM METAL PLATES	
●STANDARD MACHINING TOLERANCES	
●HEXAGON SOCKET HEAD CAP SCREWS······	1125
● TABLE OF HOLE SIZES BEFORE THREADING	
●PROPER BOLT AXIAL TIGHTENING FORCE / TORQUE ·······	
●STRENGTH OF BOLTS, SCREW PLUGS, AND DOWEL PINS	
●CALCULATION OF CUBIC VOLUME AND MATERIAL PHYSICAL PROPERTIES ····································	1130
●CALCULATION OF AREA, CENTER OF GRAVITY, AND GEOMETRICAL MOMENT OF INERTIA······	
●CONVERSION CHART OF TRIGONOMETRICAL FUNCTIONS	
●COMPARISON OF MATERIAL JIS AND RELATED OVERSEAS STANDARDS (1)	
●COMPARISON OF MATERIAL JIS AND RELATED OVERSEAS STANDARDS (2)	1137
●COMPARISON OF DIE STEEL BY MANUFACTURERS	
●HARDNESS OF PRIMARY STEEL MATERIALS AND THE CORRESPONDING TOOLS	1140

1. The International System of Units (SI) and its usage

1-1. Scope of application This standard specifies the International System of Units (SI) and how to use units under the SI system, as well as

the units which are or may be used in conjunction with SI system units.

1—2. Terms and definitions The terminology used in this standard and the definitions thereof are as follows.

(1) International System of Units (SI) A consistent system of units adopted and recommended by the International Committee on Weights and Measures. It contains base units and supplementary units, units derived from them, and their integer exponents to the 10th power. SI is the abbreviation of System International d Unites (International System of Units).

(2) SI units A general term used to describe base units, supplementary units, and derived units under the International System of Units (SI).

(3) Base units The units shown in Table 1 are considered the base units.

(4) Supplementary units The units shown in Table 2 below are considered the supplementary units.

Table 1. Base Units

Measure	Unit name	Unit symbol	Definition
Length	Meter	m	A meter is the length of the path traveled by light in a vacuum during a time interval of $\frac{1}{299792458}$ of a second.
Mass	Kilogram	kg	A kilogram is a unit of mass (not weight or force). It is equal to the mass of the international prototype of the kilogram.
Time	Second	S	A second is the duration of 9, 192, 631, 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom.
Electric flow	Ampere	A	An ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 meter apart in a vacuum, would produce between these conductors a force equal to 2×10-7 Newtons per meter of length.
Thermodynamic temperature	Kelvin	К	A Kelvin is the fraction $\frac{1}{273.16}$ of the thermodynamic temperature of the triple point of water.
Amount of substance	Mole	mol	A mole is the amount of substance of a system that contains as many elementary particles (1) or aggregations of elementary particles as there are atoms in 0.012 kilogram of carbon 12. When the mole is used, the elementary particles must be specified.
Luminous intensity	Candela	cd	A candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in that direction of $\frac{1}{683}$ watts per steradian.

Note (1) The elementary particles here must be atoms, molecules, ions, electrons or other particles.

Table 2. Supplementary Units

Measure	Unit name	Unit symbol	Definition
Plane angle	Radian	rad	A radian is the plane angle between two radii of a circle that cuts off an arc on the circumference equal in length to the radius.
Solid angle	Steradian	sr	A steradian is the solid angle which, having its vertex in the center of a sphere, cuts off an area of the surface of the sphere equal to that of a square with sides equal in length to the radius of the sphere.

(5) **Derived Units**Units expressed algebraically (with mathematical symbols such as multiplication and division signs) using base units and supplementary units are considered to be derived units. Derived units with special names and symbols are shown in **Table 3**.

Example: Examples of SI Derived Units Expressed in Terms of Base Units

Measure	Derived unit					
Weasure	Name	Symbol				
Surface area	Square meter	m²				
Volume	Cubic meter	m³				
Speed	Meters per second	m/s				
Acceleration	Meter per second per second	m/s²				
Wave numbers	Per meter	m-1				
Density	Kilograms per cubic meter	kg/m³				
Current density	Amperes per square meter	A/m²				
Magnetic field strength	Amperes per meter	A/m				
Concentration of substance	Moles per cubic meter	mol/m³				
Specific volume	Cubic meters per kilogram	m³/kg				
Luminance	Candelas per square meter	cd/m²				

Table 3. SI Derived Units with Special Names and Symbols

Measure	Derived u	nit	Derivation from basic unit or supplementary
Measure	Name	Symbol	unit, or derivation from another derived unit
Frequency	Hertz	Hz	1 Hz =1 s ⁻¹
Force	Newton	N	1 N =1 kg·m/s ²
Pressure, stress	Pascal	Pa	1 Pa =1 N/m ²
Energy, work, heat quantity	Joule	J	1 J =1 N⋅m
Work rate, process rate, power, electric power	Watt	W	1 W =1 J/s
Electric charge, quantity of electricity	Coulomb	С	1 C =1 A·s
Electric potential, potential difference, voltage, electromotive force	Volt	V	1 V =1 J/C
Electrostatic capacity, capacitance	Farad	F	1 F = 1 C/V
Electric resistance	Ohm	Ω	$1 \Omega = 1 V/A$
Conductance	Siemens	S	$1 S = 1 \Omega^{-1}$
Magnetic flux	Weber	Wb	1 Wb=1 V·s
Magnetic flux density (magnetic induction)	Tesla	T	1 T = 1 Wb/m ²
Inductance	Henry	Н	1 H = 1 Wb/A
Celsius temperature	Degrees Celsius or degrees	℃	1 t°C = $(t+273.15)$ K
Luminous flux	Lumen	lm	1 lm =1 cd·sr
Illumination	Lux	lx	1 lx =1 lm/m ²
Radioactivity	Becquerel	Bq	1 Bq =1 s ⁻¹
Absorbed dose	Gray	Gy	1 Gy =1 J/kg
Dose equivalent	Sievert	Sv	1 Sv =1 J/kg

1-3. Integer exponents of SI units

(1) Prefixes The multiples, prefix names, and prefix symbols that compose the integer exponents of 10 for SI units are shown in Table 4.

Table 4. Prefixes

Multiple of	Pre	fix	Multiple of	Pre	fix	Multiple of	Pre	fix
unit	Name	Symbol	unit	Name	Symbol	unit	Name	Symbol
1018	Exa	Е	10 ²	Hecto	h	10-9	Nano	n
10 ¹⁵	Peta	Р	10	Deca	da	10-12	Pico	р
10 ¹²	Tera	Т	10-1	Deci	d	10 ⁻¹⁵	Femto	f
10 ⁹	Giga	G	10-2	Centi	С	10 ⁻¹⁸	Atto	a
10 ⁶	Mega	M	10-3	Milli	m			
10 ³	Kilo	k	10-6	Micro	μ			

2. Conversion table for conventional units that are difficult to convert to SI units

(The units enclosed by bold lines are the SI units.)

	N	dyn	kgf
90.	1	1×10⁵	1.019 72×10 ⁻¹
Force	1×10⁻⁵	1	1.019 72×10⁻⁶
	9.806 65	9.806 65×10⁵	1

	Pa∙s	сР	Р
sity	1	1×10³	1×10
Viscosity	1×10⁻³	1	1×10 ⁻²
	1×10⁻¹	1×10²	1

Note: 1P=1dyn•s/cm²=1g/cm•s 1Pa•s=1N•s/m², 1cP=1mPa•s

	Pa or N/m²	MPa or N/mm²	kgf/mm²	kgf/cm ²
٠,	1	1×10 ⁻⁶	1.019 72×10 ⁻⁷	1.019 72×10 ⁻⁵
Stress	1×10 ⁶	1	1.019 72×10⁻¹	1.019 72×10
S	9.806 65×10 ⁶	9.806 65	1	1×10 ²
	9.806 65×10 ⁴	9.806 65×10 ⁻²	1×10 ⁻²	1

sity	m²/s	cSt	St
visco	1	1×10 ⁶	1×10⁴
Kinematic viscosity	1×10⁻⁶	1	1×10 ⁻²
	1×10⁻⁴	1×10²	1

Note: 1St=1cm²/s, 1cSt=1mm²/s

Note: 1Pa=1N/m², 1MPa=1N/mm²

	Pa	kPa	MPa	bar	kgf/cm ²	atm	mmH ₂ O	mmHg or Torr
	1	1 ×10 ⁻³	1×10 ⁻⁶	1×10⁻⁵	1.019 72×10 ⁻⁵	9.869 23×10 ⁻⁶	1.019 72×10 ⁻¹	7.500 62×10 ⁻³
	1×10³	1	1 ×10⁻³	1×10 ⁻²	1.019 72×10 ⁻²	9.869 23 ×10⁻³	1.01972×10^{2}	7.500 62
Pressure	1×10 ⁶	1×10 ³	1	1×10	1.019 72×10	9.869 23	1.019 72×10 ⁵	$7.500 62 \times 10^3$
res	1×10 ⁵	1×10 ²	1 ×10⁻¹	1	1.019 72	9.869 23 ×10⁻¹	1.019 72×10 ⁴	$7.500 62 \times 10^{2}$
	9.806 65 ×10⁴	9.806 65 ×10	9.806 65 ×10⁻²	9.806 65 ×10⁻¹	1	9.678 41 ×10⁻¹	1×10 ⁴	7.35559×10^{2}
	1.013 25 ×10 ⁵	1.013 25 × 10 ²	1.013 25 ×10⁻¹	1.013 25	1.033 23	1	1.033 23×10 ⁴	$7.600\ 00\times10^{2}$
	9.806 65	9.806 65 ×10⁻³	9.806 65 ×10⁻⁶	9.806 65×10 ⁻⁵	1×10 ⁻⁴	9.678 41 ×10⁻⁵	1	7.355 59×10 ⁻²
	$1.333\ 22 \times 10^2$	1.333 22 ×10⁻¹	1.333 22 ×10⁻⁴	1.333 22 ×10⁻³	1.359 51 ×10 ⁻³	1.315 79×10⁻³	1.359 51 ×10	1

Note: 1Pa=1N/m²

ntity	J	kW∙h	kgf∙m	kcal
at qua	1	2.777 78×10 ⁻⁷	1.019 72×10 ⁻¹	2.388 89×10-4
gy, hea	3.600 ×10 ⁶	1	3.670 98×10 ⁵	8.600 0 ×10 ²
Work, energy, heat quantity	9.806 65	2.724 07×10 ⁻⁶	1	2.342 70×10 ⁻³
Work	4.186 05×10³	1.162 79×10⁻³	4.268 58×10 ²	1

Note: 1J=1W·s, 1J=1N·m

at flow	W	kgf•m/s	PS	kcal/h
er , he	1	1.019 72×10 ⁻¹	1.359 62×10 ⁻³	8.600 0 ×10 ⁻¹
process rate/power , heat flow	9.806 65	1	1.333 33×10 ⁻²	8.433 71
process	7.355 ×10 ²	7.5 ×10	1	$6.325\ 29\times10^{2}$
Power	1.162 79	1.185 72×10 ⁻¹	1.580 95×10⁻³	1

Note: 1W=1J/s, PS: French horsepower

ctivity	W/(m·K)	kcal/(m•h•℃)
приоэ	1	8.600 0×10 ⁻¹
Thermal con	1.162 79	1

heattransfer	W/(m²⋅K)	kcal/(m²•h•°C)
itof heatt	1	8.600 0×10 ⁻¹
efficier	1.162 79	1

		_
neat	J/(kg·K)	kcal/(kg•℃) cal/(g•℃)
Specific heat	1	2.388 89×10-4
Spec	4.186 05×10 ⁻³	1

[MATERIALS] HARDENING AND HARDNESS TESTS

Heat Treatment for Steel Materials

Name	Vickers hardness (HV)	Hardening depth (mm)	Strain	Applicable materials	Typical materials	Remarks
Through hardening	Max. 750	All	Varies according to the material.	High-C steel C>0.45%	SKS3 SKS21 SUJ2 SKH51 SKS93 SK4 S45C	Should not be used for long parts such as spindles or for precision parts.
Carburizing	Max. 750	Standard 0.5 Max. 2	Medium	Low-C steel C<0.3%	SCM415 SNCM220	Localized hardening is possible. Hardening depth must be specified on drawings. Suitable for precision parts
Induction hardening	Max. 500	1~2	Large	Medium-C steel C 0.3~0.5%	S45C	Localized hardening is possible. Expensive in small volumes Good fatigue resistance
Nitriding	900~1000	0.003~0.008	Small	Nitriding steel	SACM645	Highest hardening hardness Suitable for precision parts Suitable for sliding bearing spindles
Tufftride [®]	Carbon steel 500 SUS 1000	0.01~0.02	Small	Steel materials	S45C SCM415 SK3 Stainless steel	Good fatigue resistance and wear resistance Same corrosion resistance as zinc plating Not suitable for precision parts because polishing following the heat treatment is not possible. Suitable for oil-free lubrication
Bluing				Wire rod	SWP—B	Low temperature annealing Enhances elasticity by removing internal stress during forming

Hardness Test Methods and Applicable Parts

Test method	Principle	Applicable heat-treated parts	Characteristics	Remarks
1. Brinell hardness	A ball indenter (steel or carbide alloy) is used to indent the test surface. Hardness is given by dividing the test load by the surface area, which was found from the diameter of the indentation.	Annealed parts Normalized parts Anchored materials	Suitable for uneven materials and forged products because the indent is large. Not suitable for small or thin specimens	JIS Z 2243
2. Rockwell hardness	The standard or test load is applied via a diamond or ball indenter, and the hardness value is read from the tester.	Hardened parts and tempered parts Carburized surfaces Nitrided surfaces Thin sheets of copper, brass, bronze, or similar materials Rockwell C scale (HRC) is not suitable for materials such as narrow pins and thin sheets.	Hardness value can be obtained quickly. Suitable as an intermediate test of actual products Caution is required because there are many types. There are many types of Rockwell hardness testers, including the A scale (HRA), B scale (HRB), C scale (HRC), and D scale (HRD).	JIS Z 2245
3. Shore hardness	The specimen is set on a table and a hammer is dropped from a set height. Hardness is determined based on how high the hammer bounces.	Hardened parts and tempered parts Nitrided parts Large parts treated by carburizing or similar process	Extremely easy to operate. Data can be obtained quickly. Suitable for large parts Because indent is small and not noticeable, this test is suitable for actual products. Compact and light-weight. Portable.	JIS Z 2246
4. Vickers hardness	A diamond square pyramid indenter with a vertex angle of 136 degrees is used to create an indentation in the test surface. The hardness value is found from the test load and the surface area of the indent, computed from the length of the diagonal lines of the indent. (Conversion is performed automatically.)	Materials with a thin hardened layer created by induction hardening, carburizing, nitriding, electroplating, ceramic coating, etc. Hardened layer depth in carburized and nitrided parts	Suitable for small and thin specimens Because the indenter is diamond, this test can be used with materials of any hardness.	JIS Z 2244

CONVERSION TABLE OF HARDNESS (SAE J 417) *Revised 1983.

Approximate Conversion Values for Rockwell C Hardness Values of Steel (1)

(HRC)	(475)	Brinell hard 10 mr Load 3	n ball	Ro	ockwell Hardness	(3)		vell superficial ha nond conical inde		(Hs)	Tensile strength	Rockwell
Rockwell C scale hardness	(HV) Vickers hardness	Standard ball	Tungsten carbide ball	(HRA) A scale Load 60kgf Diamond conical indenter	(HRB) B scale Load 100kgf Dia. 1.6mm (1/16 in.) ball	(HRD) D scale Load 100kgf Diamond conical indenter	15—N scale Load 15kgf	30—N scale Load 30kgf	45—N scale Load 45kgf	Shore hardness	(approximate value) MPa (kgf/mm²)	C scale hardness
68 67	940 900	_	_	85.6 85.0	_	76.9 76.1	93.2 92.9	84.4 83.6	75.4 74.2	97 95	_	68 67
66	865	_	_	84.5	_	75.4	92.5	82.8	73.3	92	_	66
65 64	832 800	_	(739) (722)	83.9 83.4	_	74.5 73.8	92.2 91.8	81.9 81.1	72.0 71.0	91 88	_	65 64
04	800	_	(122)	03.4	_	73.0	91.0	01.1	71.0	00	_	04
63	772	_	(705)	82.8	_	73.0	91.4	80.1	69 9	87	_	63
62 61	746 720	_	(688) (670)	82.3 81.8	_	72.2 71.5	91.1 90.7	79.3 78.4	68.8 67.7	85 83	_	62 61
60	697	_	(654)	81.2	_	70.7	90.2	77.5	66.6	81	_	60
59	674	_	(634)	80.7	_	69.9	89.8	76.6	65.5	80	_	59
58	653	_	615	80.1	_	69.2	89.3	75.7	64.3	78	_	58
57	633	_	595	79.6	_	68.5	88.9	74.8	63.2	76	_	57
56 55	613 595	_	577 560	79.0 78.5	_	67.7 66.9	88.3 87.9	73.9 73.0	62.0 60.9	75 74	2075 (212)	56 55
54	577	_	543	78.0	_	66.1	87.4	72.0	59.8	72	2015 (205)	54
53	560	_	525	77.4	_	65.4	86.9	71.2	58.6	71	1950 (199)	53
52	544	(500)	512	76.8	_	64.6	86.4	70.2	57.4	69	1880 (192)	52
51	528	(487)	496	76.3	_	63.8	85.9	69.4	56.1	68	1820 (186)	51
50 49	513 498	(475) (464)	481 469	75.9 75.2	_	63.1 62.1	85.5 85.0	68.5 67.6	55.0 53.8	67 66	1760 (179) 1695 (173)	50 49
48	484	451	455	74.7		61.4	84.5	66.7	52.5	64	1625 (167)	48
40 47	404	442	433	74.7 74.1	_	60.8	83.9	66.7 65.8	52.5	63	1635 (167) 1580 (161)	46
46	458	432	432	73.6	_	60.0	83.5	64.8	50.3	62	1530 (156)	46
45 44	446 434	421 409	421 409	73.1 72.5	_	59.2 58.5	83.0 82.5	64.0 63.1	49.0 47.8	60 58	1480 (151) 1435 (146)	45 44
43 42	423 412	400 390	400 390	72.0 71.5	_	57.7 56.9	82.0 81.5	62.2 61.3	46.7 45.5	57 56	1385 (141) 1340 (136)	43 42
41	402	381	381	70.9	_	56.2	80.9	60.4	44.3	55	1295 (132)	41
40 39	392 382	371 362	371 362	70.4 69.9	_	55.4 54.6	80.4 79.9	59.5 58.6	43.1 41.9	54 52	1250 (127) 1215 (124)	40 39
					_							
38 37	372 363	353 344	353 344	69.4 68.9	_	53.8 53.1	79.4 78.8	57.7 56.8	40.8 39.6	51 50	1180 (120) 1160 (118)	38 37
36	354	336	336	68.4	(109.0)	52.3	78.3	55.9	38.4	49	1115(114)	36
35	345	327	327	67.9	(108.5)	51.5	77.7	55.0	37.2	48	1080 (110)	35
34	336	319	319	67.4	(108.0)	50.8	77.2	54.2	36.1	47	1055 (108)	34
33 32	327	311	311	66.8	(107.5)	50.0 49.2	76.6	53.3	34.9 33.7	46	1025 (105)	33 32
31	318 310	301 294	301 294	66.3 65.8	(107.0) (106.0)	49.2	76.1 75.6	52.1 51.3	33.7	44 43	1000 (102) 980 (100)	31
30	302	286	286	65.3	(105.5)	47.7	75.0	50.4	31.3	42	950 (97)	30
29	294	279	279	64.7	(104.5)	47.0	74.5	49.5	30.1	41	930 (95)	29
28	286	271	271	64.3	(104.0)	46.1	73.9	48.6	28.9	41	910 (93)	28
27 26	279 272	264 258	264 258	63.8 63.3	(103.0) (102.5)	45.2 44.6	73.3 72.8	47.7 46.8	27.8 26.7	40 38	880 (90) 860 (88)	27 26
25	266	253	253	62.8	(101.5)	43.8	72.2	45.9	25.5	38	840 (86)	25
24	260	247	247	62.4	(101.0)	43.1	71.6	45.0	24.3	37	825 (84)	24
23	254	243	243	62.0	100.0	42.1	71.0	44.0	23.1	36	805 (82)	23
22 21	248 243	237 231	237 231	61.5 61.0	99.0 98.5	41.6 40.9	70.5 69.9	43.2 42.3	22.0 20.7	35 35	785 (80) 770 (79)	22 21
20	238	226	226	60.5	97.8	40.9	69.4	42.5	19.6	34	760 (77)	20
(18)	230	219	219	_	96.7	_	_	_	_	33	730 (75)	(18)
(16)	222	212	212	_	95.5	_	_	_	_	32	705 (72)	(16)
(14)	213 204	203 194	203 194	_	93.9 92.3	_	_	_	_	31	675 (69) 650 (66)	(14)
(12) (10)	196	187	187	_	90.7	_	_	_	_	29 28	620 (63)	(12) (10)
(8)	188	179	179	_	89.5	_	_	_	_	27	600 (61)	(8)
(6)	180	171	171	_	87.1	_	_	_	_	26	580 (59)	(6)
(4)	173	165	165	_	85.5	_	_	_	_	25	550 (56)	(4)
(2)	166 160	158 152	158 152	_	83.5 81.7	_	_	_	_	24 24	530 (54) 515 (53)	(2) (0)

 $1MPa = 1N/mm^2$

Note (1): Figures in blue are based on ASTM E 140, Table 1 (Jointly prepared by SAE, ASM and ASTM.)
(2): The units and figures shown in parentheses () following the listed value are the results of conversion from PSI figures by reference to JIS Z 8413 and Z8438 conversion tables.

^{(3):} The figures in parentheses () are in ranges not frequently used. They are given as reference data.

Varieties of Surface Roughness

The definitions and notation are prescribed for the parameters which indicate the surface roughness of an industrial product, including the arithmetic average roughness (Ra), maximum height (Ry), 10-spot average roughness (Rz), average concave-to-convex distance (Sm), average distance between local peaks (S), and load length rate (tp). Surface roughness is the arithmetic average of values at randomly selected spots on the surface of an object.

[Center-line average roughness (Ra75) is defined in the supplements to JIS B 0031 and JIS B 0601.]

Typical calculations of surface roughness

Arithmetical average roughness (Ra

A portion stretching over a reference length in the direction in which the average line extends is cut out from the roughness curve. This portion is presented in a new graph with the X axis extending in the same direction as the average line and the Y axis representing the magnitude. When the roughness curve is represented by $y=f(\chi)$, Ra is the value in microns (μm) found from the formula shown at right.

Maximum height (Ry)

A portion stretching over a reference length in the direction in which the average line extends is cut out from the roughness curve. The gap between the peak line and valley line in this portion is measured in the direction of the magnitude axis, and this value is indicated in microns (μ m).

Note: When finding Ry, the reference length is selected from a portion which contains no abnormally high peaks or abnormally low valleys (locations which are likely flaws).

Ten-spot average roughness (Rz)

A portion stretching over a reference length in the direction in which the average line extends is cut out from the roughness curve. Within this portion, the average absolute value of the height (\mbox{Yp}) of the five highest peaks as measured from the average line and the average absolute value of the height (\mbox{Yv}) of the five lowest valleys are added together. Rz is this sum, in microns (μ m).

 $Rz = \frac{|Yp_1 + Yp_2 + Yp_3 + Yp_4 + Yp_5| + |Yv_1 + Yv_2 + Yv_3 + Yv_4 + Yv_5|}{z}$

Yp1, Yp2, Yp3, Yp4, Yp5 : Heig

: Heights of the of top five peaks within the sampled portion of reference length $\boldsymbol{\ell}$

Yv1, Yv2, Yv3, Yv4, Yv5 : Heights of the five lowest valleys within the sampled portion of reference length ℓ

Reference: Relationship Between Arithmetic Average Roughness (Ra) and Previous Notation

	Arithmetical averag Ra	e roughness	Max. height Ry	Ten-spot average roughness Rz	Ry•Rz reference length	Conventional finishing symbol
Standard sequence	Cut-off value λ c (mm)	Drawing indication of surface texture	Standard	sequence	ℓ (mm)	illisiiliy syilibul
0.012 a	0.08		0.05 s	0.05 z	0.08	
0.025 a	0.25	,	0.1 s	0.1 z	0.00	
0.05 a	0.23	0.012 / ~ 0.2 /	0.2 s	0.2 z	0.25	\vee
0.1 a		\ \ \ \ \ \	0.4 s	0.4 z	0.23	
0.2 a			0.8 s	0.8 z		
0.4 a	0.8		1.6 s	1.6 z	0.8	
0.8 a		0.4 ~ 1.6	3.2 s	3.2 z	0.0	$\vee\!\!\vee\!\!\vee$
1.6 a		V V	6.3 s	6.3 z		
3.2 a	2.5	32 / ~ 63 /	12.5 s	12.5 z		
6.3 a	2.5	3.2 ~ 6.3	25 s	25 z	2.5	
12.5 a		12.5 / ~ 25 /	50 s	50 z		
25 a	8	12.5/ ~ 25/	100 s	100 z	0	∇
50 a		50 / 100 /	200 s	200 z	8	
100 a	_	50/ ~ 100/	400 s	400 z	_	~

[%]The relationships among the three varieties shown here are not precise, and are presented for convenience only.

^{**}Ra: The evaluation lengths of Ry and Rz are the cut-off values and the reference length each multiplied by five.

Position of Auxiliary Symbols for Surface Symbols

An auxiliary symbol indicating a surface roughness value, cut-off value or reference length, machining method, grain direction, surface undulation, etc. is placed around the surface symbol as shown in Fig. 1.

Fig. 1 Positions of Auxiliary Symbols

- a: Ra value
- b: Machining method
- c: Cutoff value Evaluation length
- c': Reference length · Evaluation length
- d: Grain direction
- f: Parameter other than Ra (when tp, this is parameter / cutoff level)
- g: Surface undulation (according to JIS B 0610)

Remark: Symbols other than a and f shall be entered when needed.

Reference : In ISO 1302, a finish allowance is entered at the location of e in Figure 1.

Symbol	Meaning	Diagram	Exampl
=	Direction of grains left by the cutting instrument are parallel to the projection plane of the drawing where the symbol is entered. Example: Shaped surface	Direction of grain left by cutting instrument	Surf
上	Direction of grains left by the cutting instrument are perpendicular to the projection plane of the drawing where the symbol is entered. Examples: Shaped surface (side view), circular cut, cylindrical cut	Direction of grain left by cutting instrument	Symbol indicating
X	Direction of grains left by the cutting instrument intersect in 2 directions at angles to the projection plane of the drawing where the symbol is entered. Example: Honed surface	Direction of grain left by cutting instrument	Exar (a) 25 /////// 25 ///////
М	Direction of grains left by the cutting instrument intersect in multiple directions or have no direction. Examples: Lapped surface, superfinished surface, and surface finished by front milling or end milling with cross feed	**************************************	Exampl
С	Grains left by the cutting instrument are virtually concentric around the center of the projection plane of the drawing where the symbol is entered. Example: Facing surface		Examples (a) 6.3 1.6
R	Grains left by the cutting instrument are virtually radial with respect to the center of the projection plane of the drawing where the symbol is entered.	₩ ✓R	Example (a)

oles of surface symbols

face symbol

ting a surface that requires a removal process

ng a surface where removal processes are prohibited

imples of indicating the Ra upper limit

(b)

le of indicating grain direction

es of indicating Ra upper limit and lower limit

es of indicating the machining method

[TECHNICAL DATA]

SURFACE ROUGHNESS BY DIFFERENT MACHINING METHODS

Arithm	etic average roughness Ra	0.025	0.05	0.1	0.2	0.4	0.8	1.6	3.2	6.3	12.5	25	50	100
notation ighness	Max. height Rmax.	0.1 —\$	0.2 -\$	0.4 -\$	0.8 -\$	1.6 -\$	3.2 -\$	6.3 -\$	12.5 —\$	25 —\$	50 —\$	100 -s	200 —\$	400 —\$
Conventional notation for surface roughness	Standard value of reference length (mm)		0.	.25			0.8		2	.5		8	2	5
Conv for si	Finishing symbol		\vee	\sim					$\overline{\nabla}$	∇	7	7	-	-
	Forging								Fi	ne				
	Casting								Fi	ne				
	Die casting													
	Hot rolling													
	Cold rolling													
	Drawing													
	Extruding													
	Tumbling													
	Sandblasting													
	Rolling													
	Front milling						Fi	ne						
	Planing													
	Carving (including slotting)													
	Milling						Fi	ne						
	Precision boring													
spo	Filing						Fi	ne						
Machining methods	Round grinding				Fine	-	High		Mediu	m	-	Rougi	h	
ıing r	Boring						Fi	ne						
achir	Drilling													
Σ	Reaming					Fi	ne							
	Broach grinding					Fi	ne							
	Shaving													
	Grinding			Fine	High		Mediu	m		Rough				
	Hone finishing			Fi	ne									
	Super finishing	Fi	ne											
	Buffing		+	Fi	ne									
	Paper finishing			Fi	ne									
	Lapping	Fi	ne											
	Liquid honing			Fi	ne									
	Burnishing													
	Surface rolling				-									
	Electric discharge carving													
	WEDM (Wire electric discharge machining)													
	Chemical polishing						Fine							
	Electrolytic abrasion		Fi	ine										

■Types and symbols of geometrical tolerances

Туј	e of tolerance	Symbol	Definition	of tolerance range	Examples of drawings and their interpretations				
	Straightness tolerance			If the symbol ϕ is attached before the numerical value that indicates the tolerance range, this tolerance range is the range within a cylinder of diameter t.	\$\displaystyle{\phi}\$ 0.08	If a tolerance frame is connected to a dimension that indicates the diameter of a cylinder, the axis line of the cylinder shall be contained within a cylinder of 0.08mm diameter.			
	Flatness tolerance			The tolerance range is the area between two parallel planes separated by distance t.	[] 0.08	This surface shall be contained within two parallel planes separated by 0.08mm.			
Shape tolerances	Circularity tolerance	\bigcirc		The tolerance range in the considered plane is the area between two concentric circles separated by distance t.	0.1	The circumference in any section normal to the axis shall be contained between two concentric circles separated by 0.1mm on the same plane.			
Shape to	Cylindricity tolerance	\nearrow		The tolerance range is the range contained between two coaxial cylinder surfaces separated by distance t.	Ø 0.1	The considered surface shall be contained between two coaxial cylinder surfaces separated by 0.1mm.			
	Profile tolerance of line			The tolerance range is the range contained between the two envelope curves formed by a circle with diameter t, the center of which is situated on the theoretically correct profile curve.	0.04	In any cross-section parallel to the projection plane, the considered profile shall be contained between the two envelope curves formed by a 0.04mm diameter circle, the center of which is situated on the theoretically correct profile curve.			
	Profile tolerance of surface		Søt	The tolerance range is the range contained between the two enveloping surfaces formed by a sphere with diameter t, the center of which is situated on the theoretically correct profile surface.	0.02	The considered surface shall be contained between the two enveloping surfaces formed by a 0.02mm diameter sphere, the center of which is situated on the surface containing the theoretically correct profile.			
seou	Parallelism tolerance	//		The tolerance range is the range contained between two planes parallel to the datum plane and separated by distance t.	7// 0.01 A	The surface shown by the arrow of the indicator line shall be contained between two planes parallel to the datum plane A and separated by 0.01mm in the direction of the arrow of the indicator line.			
Orientation tolerances	Perpendicularity tolerance	上	ø [†] t	If symbol ϕ is attached before the numerical value indicating the tolerance range, this tolerance range is the range contained within a cylinder of diameter t that is perpendicular to the datum plane.	φ 1 = ⊥ φ 0.01 A	The axis of the cylinder shown by the arrow of the indicator line shall be contained within a cylinder of diameter 0.01mm that is perpendicular to the datum plane A.			
0rie	Angularity tolerance			The tolerance range is the range contained between two parallel planes inclined at a specified angle to the datum plane and separated from each other by distance t.	40°	The surface shown by the arrow of the indicator line shall be contained between two parallel planes which are inclined with theoretical exactness by 40 degrees to the datum plane A, and which are separated by 0.08mm in the direction of the arrow of the leader line.			
seou	Positional tolerance	ϕ	True location	The tolerance range is the range contained within a circle or sphere of diameter t with its center situated at the theoretically exact location of the considered point (hereafter referred to as the "true location").	B	The point shown by the indicator line shall be contained within a 0.03mm diameter circle with its center situated at the true location 60mm from datum line A and 100mm from datum line B.			
Positional tolerances	Coaxiality tolerance or concentricity tolerance	0		If symbol ϕ is attached before the numerical value that indicates the tolerance, the tolerance range is the range within a cylinder of diameter t whose axis matches the datum axis line.	A	The axis of the cylinder shown by the arrow of the indicator line shall be contained within a cylinder of diameter 0.01 mm whose axis matches datum axis line A.			
Pos	Symmetry	+		The tolerance range is the range contained between two parallel planes separated by distance t and arranged symmetrically with respect to the datum center plane.	A = 0.08 A	The center plane shown by the arrow of the indicator line shall be contained between two parallel planes separated by 0.08mm and arranged symmetrically with respect to the datum center plane A.			
olerances	Circular run-out tolerance	/	Measuring plane Surface with tolerances	The tolerance range is the range contained between two concentric circles separated in the axial direction by distance t and the centers of which are situated on the datum axis line on any measuring plane normal to the datum axis line.	0.1 A-B	The radial run-out of the cylinder surface shown by the arrow of the indicator line shall not exceed 0.1 mm on any measuring plane normal to the datum axis line when the cylinder is rotated by one rotation about the datum axis line A—B.			
Run-out tolerances	Total run-out tolerance			The tolerance range is the range contained between two coaxial cylinders having axes agreeing with the datum axis line and separated from each other by distance t in the radial direction.	0.1 A-B	The total radial run-out of the cylinder surface shown by the arrow of the indicator line shall not exceed 0.1mm at any point on the cylinder surface when the cylindrical part is rotated about the datum axis line A—B.			

	a -	iding part	ASB (e9)	s inserted	r pin (g6)	· device		sing	(6) and shafts t	ssive side) (m5) 4D, etc. (m5)	MSD, etc. (n5) Il pin MST (p6) ive side)		g	e seat	arge torque)	ogetner g
Application example	Piston ring and piston ring groove Fitting by means of a loose set pin	Crank web and pin bearing (side) Exhaust valve box and spring bearing sliding part Piston ring and piston ring groove	Fitting of exhaust valve seat Main bearing for crankshaft Regular sliding part stripper bolt MSB (e9)	Part where a cooled exhaust valve box is inserted Regular shaft and bushing Link device lever and bushing	Link device pin and lever Key and key groove Precision control valve rod Guide lifter pin (g6)	Fitting of rim and boss Fitting of gears in a precision gear device Dowel pin MSTH (h7)	Fitting two coupling flanges Governor path and pin Fitting of gear rim and boss	Fitting of gear pump shaft and casing Reamer bolt	Reamer bolt Dowel pin MSTM (m6) Fastening of hydraulic device pistons and shafts Fitting of coupling flange and shaft	Fitting of flexible shaft coupling and gear (passive side) Precision fitting Punch SPAS, etc. (m5) Insertion of suction valve and valve guide Die MHD, etc. (m5)	insertion of suction valve and valve guide Straight de INSO, etc. (16) Fixing a gear and shaft together (small torque) Dowel pin MST (16) Flexible coupling shaft and gear (drive side)	Coupling and shaft	Fitting and fixing a bearing bushing	Insertion of suction valve and valve seat	Fixing a coupling flange and shaft together (large torque)	rixing a drive gear rim and boss togetner Fitting and fixing a bearing bushing
Functional classification	Part which for functional reasons requires a large gap Expands. Large positional error. Long fitting length	uced. sost st	liding part pricated.)	mbled)	on motion with		Fitting force alone is insufficient for	Fitting force along is	sufficient for transmitting small force		Fitting force is	capable of	transmitting considerable force			
Functional	Part which for functional reas Expands. Large po Long fitting length	Cost needs to be reduced Manufacturing cost Maintenance cost	Regular rotating or sliding part (Must be well lubricated.)	Regular fitting part (is often disassembled)	Part requiring precision motion with almost no gap				Difficult to	without damaging	the part.					
Applicable part	Part which accommodates a particularly wide gap, or a moving part which requires a gap Part which accommodates a wide gap to facilitate assembly Part which requires an appropriate gap even at high temperatures	Part which accommodates a wide gap, or which requires a wide gap	Part which accommodates a fairly wide gap, or a moving part which requires a gap Fairly wide gap and well lubricated bearing Bearing subjected to high temperature, high speed, and high load (high-degree forced lubrication)	Fitting which provides an appropriate clearance and permits movement (high-quality fitting). Regular normal-temperature bearing Iubricated with grease or oil	Continuously rotating part of a precision machine under light load Fitting with a narrow gap and which permits movement (spigot, positioning) High-precision sliding part	Fitting which allows movement by hand when a lubricant is used (high-quality positioning) Special high-precision sliding part Unimportant stationary part	Installation part which is compatible with a very small tightening interference High-precision positioning which locks both parts in place while unit is in use Fitting which can be assembled/disassembled using a wooden or lead hammer	Fitting which requires an iron hammer or hand press for assembly/disassembly (A key or other device is required in order to prevent inter-part shaft rotation.) Precision positioning	Assembly/disassembly are the same as the above. Precision positioning which permits no gap at all	Fitting which requires considerable force for assembly/disassembly Precision statorary fitting (4 kg/ or other device is required for high-torque transmission purposes.)	Fitting which requires large force for assembly disassembly (Akey or other device) is equired for high-droque transmission purposes.) However, only light press-fitting force is required for press-fitting when both parts are non-ferrous parts. Fastened using the standard press-fitting for fastening a ferrous part to a ferrous, bronze, or copper part	Assembly/disassembly are the same as the above. Shrinkage press fitting, cold press fitting or forced press fitting is required for large parts		Permanent assembly in which parts are both tightly fastened together and will not be dieaseembled and which rangings chinbage princes fifting cold	will not be diseased by the wind wind it is a fitting. For light alloys, only ordinary press	niung is required.
Н9	60	6p	69			h9										
H8		6p	68	f7 f8		h7 h8										
Н7			e7	17	96	h6	9sí	k6	9ш	9u	9d	6	9S	t6	9n	×
9				£	95	h5	h5 h6	js5	k5	m2	n5 n6	p	ιū			
	Loose fit	roll fit		J Tif IIoA	tit llor trlgiT	tif gnibil8	Tif dau9	ı ransıtıon . İking		Light press fit	fit asen ^o				s fit, shrink	Strong pres
	161		ve relative Jearance fi		БЧ		1!!	other. Transition		ove relative	om tonnso s		rferen	atril		

DIMENSIONAL TOLERANCES AND FITS Excerpts from JIS B 0401 (1999)

		note difficultional toterances for regularly used fitting	Oleian	200	ngol	7	noen	9																										
dimension	ioi io															Hole to	Hole tolerance range class	se ran	ge cla	SS													Units:	μ
More No		040	5	5	٥٥	2	2	2	-	9	91	2	0	9	72	70 90	\vdash	9	5	201	107	2/1	2	MG	M	a N	N V	ä	6	D7	2	1	1	5
than	1	+		_	_	-	_	- 1	-1		-	٧	-	٦,	-	- "	-	-	١,	-	3	4	-		-	-	+	פ "		-1			آ ۾	-20
I	m	+ 8 6	3 09+					1 +					9+	7 +	+2	-	0			+1		- I	_6 10		1 - 12	2 -10	0 -14	T		-20		ı	-28	-30
က	9	+140	+100 +70 +	+118 + +70 +	+48 +		+78 -			+ + 20	+ 18	+22	+28 +10	+12 +4	+16	+ 8+ 0	+12 +	+18 +	+30 +48 0 0	48 14 14	+1	±e +2 -6	-2 -2 -9		-1 -9 -12	0 -5	54	1 -9	9 -8	-11 -23	-15 -27	ı	-19 -31	-24 -36
9	9	_	+116 +80 +	+138 +		1		1	+47 -		+22 +		+35 -	+14 +	+20	+ 6+	+15 +2		+ 98+	+1	rč.	±7 +2	.2 +5 .7 -10	5 —3 0 —12	ī	07	74	1 —12 9 —21	. —9 —24		1	ı	-25 -37	-28 -43
10	4	_		+165 +									+43		+24 +	+ +	+18		+43	+70 +F		+2	7 + 6										-26	
41	8																			0		-Î		2 —15	5 - 18	8 —20					-39	ı	-44	
92	24	+244 +		+194 +		+117		+61	73	+ 92	+33			+20 +	+28	+13			+52 +84		4	+2								-20	-27		-33 -54	-46 -67
24	8		+110 +1		+ 65 +		+65		+40			+20	+20			0	0	0		c.aH 0			1 -15	5 -17	7 —21	1 —24	4 —28	-31	-35			-33 -54		—56 —77
30	40	+270 + +170 +	+182 +2 +120 +1	+220 +120 +					68																									
40	20				+80	8+	- 08+	+20	+20	+20	+25	+25	+25	6+	6+	0	0	0	0	ři O	H	-13	3 -18	8 —20	.0 —25	5 —28	8 –33	3 —37	, —42	-20	- 29	-45 -70		I
20	99	+310 +	+214 +2 +140 +1	+260 +140	+146 +1	+174	+220	+90 +	99			09+	- 9/+	+29 +	+ 40	+ 19	+30	+46 +	+74 +120	20 +0.5	4	+4	4-		0		4 -9		1-21	09 –	-45 -72	—55 —85	—76 —106	
65	8	_	+224 +2 +150 +1		100 +1	+		+ 09+	90	9+	+30													1 -24	1	0 —33	'	9 - 45					-91 -121	I
8	9		+257 +3 +170 +1		+174 +2	+207 +	+260 +	+107 +13	56	+159	+ 58	+71	06+		+47+	+25+	+35 +6	+54 +8	+87 +140	8 + +	+	+4	4 +10		0 9	0 — 16	0 - 10	0 -30	-24	-38 -73		-78 -113		
100	120		+267 +3 +180 +1	+320 +180	120 +1	120 +		+72 +	72					+12 +				0	0					25 —28				1	1		—66 —101	—91 —126	—131 —166	
120	140		+300 +3																											- 48 - 88	' '			
140	160	_	+310 +3 +210 +2		+208 +2 +145 +1	+245 + +145 +	+305 +	+125 + +85 +	+148 +	+185	+ 43	+ 83 + 43	+106	+39 +	+54 +14	+25 +	+ 0 + +	+63 +100 0 0	00 +160	60 ±12.5	5 ±20	20 ++4	4 +12	2 —8 33 —33	8 0 2 0 - 40	0 -20	0 —12 5 —52	-36 -61	- 68				1	ı
160	180		+330 +3 +230 +2	+390 +230																										- 63 - 83		—131 —171		
180	200		+355 +2 +240 +2																															
200	525		+375 + ²		+242 +2 +170 +1	+285 + +170 +	+355 + +170 +	+146 +100 +	+172 +	+215 +	+79	+ 36 +	+122 +	+44 +	+61+15	+ 29 + 0	+46	+72 +115 0 0	15 +185 0 0	85 0 ±14.5	1.5 ±23	23 +5	5 + 13 24 - 33	3 -8	8 0	0 —22	2 1 1 -60	1 -41	-33 -79	1 1	—113 —159	1	1	1
225	250		+395 +2 +280 +2																											—67 —113	—123 —169			
250	280		+430 +5 +300 +3		+271 +3	+320 +	+400 +	+162 +	+ 191 +	+240	+ 88+	+108 +	+137	+49 +	+ 69+	+35 +	+52 +81	81 +130	30 +210	10 + 16	+ 26	+5	-5 +16	6- 9	0 6	0 —25	5 —14	1 —47	, —36	—74 —126		ı	-	ı
280	315			+240 +330	190 +1	+	+ 190	-110 +									0	0	0	-									1					
315	355	+ 830 +	+200 +300 +3	+290	+299 +3	+350 +	+440 +	+182 +	+214 +	+265	+ 86+	+119	+151	+24	+75 +	+36+	+57 +8	+89 +140	40 +230	30	4	+7	7+ 17	7 —10	0	0 —26	9 — 16	3 –51	<u>'</u>	-87 -144				
355	400		+540 +6 +400 +2	+630 +400	210 +2	210 +	-210 +	-125 +	125 +											-								1		93 150				
400	450 +				+327 +3	+382 +	+480 +	+198 +	+232 +	+290 +		+131	+165	+ 09+	+83	+40 +	+ 63 +6	+97 +155	55 +250	50 + 20	+	+8	8 +18	10 —10		0 —27	7 –17	7 —55	9—45		1			-
420	+ 2009	+1090 +840 +840	+635 +7 +480 +2	+730 +; +480	230 +5	230 +		-135 +	135 +		89+							0	0	0 0		'			1			1	1	—109 —172				
Note: Ir	ι each c	1.	e upper t	figure is	the upc	oer din	nension	al tolera	ınce, ar	nd the Ic	wer fig	ure is t	he lower	dimens	ional to	lerance.																		

Standard dimension (mm)														S	shaft to	leran	se rani	Shaft tolerance range class	SS												Units:	S: µ m
More Not more than	6q	63	89	6p	67	68	69	9	11	8	95	1 9g	h4 *	15	h6	h7	h8	h9	js5 js	sí gsí	js7 k	k5	k6 m5	5 m6	9 u2*			9	9s	1	9n	
e	3 -140 -165	09 – 18 88	-20 -34	-20 -45	-14 -24	- 14 - 28	- 14 - 39	1-15 -12	9-19	-6 -20	7 – 9	- 7 - 8	0 %	0 4-	ο φ	0 9	0 41	0 -25 +	# 7	1+3	1+2	+ 0	9+	+6	+ +	+8 +4 +4		2 +16 6 +10	6 +20 0 +14	0 4	+24 +18	+26 +20
3	6 -170			09-	-20 -32	- 38 - 38	-50	10 - 10	-10 -22	-10 -28	4	-4 -12	0 4-	0 -2					±2.5 ±4		9+1	9 + +	6 + +							_ 6	+31	
6 10				40 76	-25 -40	-25 -47	-25 -61	-13 -22	-13 -28	-13 -35	-11	5 14	0 -4	0 9-					+3	±4.5	7=	<u>'</u>								3 2	+37	
10 14	120	1 95	—50 33	-20	-32	-32	-32	16	-16	16	9 7	9 - 7	0 1	0 0	0 ;	0 9	0 0	-1	+1 +1	1.5.5	6 +l	6 +	+12	+ + + +	+18 +20	20 +23	23 + 29	+34	+ 39	0 0	+ +	
14 18				- A	06-	ਨ 	ر د	/2_	134	43	4		c 																	×	+	
18 24					-40	-40	-40	-20	-20	-20	7—	7-	0	0								+	+15 +	+17 +	+21 +24	24 +28	28 +35	15 +41	1 +48	ا ∞	+54 +41	
24 30	-212	-162	86-	-117	19	-73	92	-33	-41	- 53	-16	-20	9		13	-21	-33	52	-l 	-1 	<u> </u>									5 +54 +41	4 +61 1 +48	+77 +64
30 40	170 -232	-120 -182			-20	-20	-50	-25	-25	-25	6	6-																		+64 9 +48		
40 50			-119	-142	-75	68	-112	-41	-20	-64	-20	-25		Ŧ	-16	25	-39	±1	+1 +1 +1	∓1 ∞ †	±15	+5	+5	6+	+9 +17	17 +17	17 +26	9 +34	+ +43			1.0.0
50 65	-190 -264	-140 -214			9	99	99	-30	-30	-30	10	10						1										+41	0 +72 1 +53	2 +85 3 +66	5 +106	(0.5
65 80			-146	-174	06—	-106	-134	-49	09-	9/_	-23	-29	- & 	5	-19	-30	-46	±	+I +I	+l -c: 	<u>ရ</u>	+5	+5	+	+11 +20	20 +20	20 +32					'
80 100	—220 —307	-170 -257			-72	-72	-72	-36	-36	-36	-12	-12																+73 +51	3 +93	3 +113	3 +146 1 +124	
100 120	—240 —327		-174	-207	-107	-126	-159	- 58	-71	06-	-27	-34	19	-15	-25	-32	54	H 	6.7 H		È H	÷	+3+	+ 13	+13 +23	23 +23	23 +37			1 +126 9 +104		I.o
120 140																												8 + + + + + 03			N 01	
140 160	—280 —380	-210 -310	145 208	145 245	-85 -125	85 148	85 185		143	-43	-14 -32	-14 -39	12 0	0 %	0 —25	0 9	0 89 	0 01	+9 +1	±12.5 ±	+20	+21 +3	+28 + +3	+33 +	+40 +15	+52	52 +68 27 +43	8 +90 3 +65	0 +125 5 +100	5 +159 0 +134	1	-
160 180	-310 -410																											+ + 68	3 +133 +108	_	- 10	
180 200																														1 2		
200 225	-380 -495	-260 -375	-170 -242	-170 -285	100 146	-100 -172	-100 -215	-50 -79	1 - 20	-50 -122	-15 -35	- 15 - 44	0 4	- 0 -50	0 -59	0 -4e	0 -72 -	0 -115 ±10		±14.5 ±	+23 +	+24 +44 +	+33 + +	+37 +17 +	+46 +17	+60	30 +79 31 +50	9 +109 0 +80	9 +159 0 +130	6 0	-1	- 1
225 250																												+113 +84	3 +169 4 +140	60		
250 280	—480 —610			- 190	-110		-110	-56	-26	-56	-17	-17						0				+27 +	+ 36				99 + 88	+126 +94	9 4			
280 315			-271	-320	-162	-191	-240	88 –	-108	-137	-40	-49	91-	23	-32	25		-130 <u>+</u>	6 H 6: H		92. +I			+20 +	+20	+34		<u> </u>	I 	I	I	
315 355			_		- - - - - -		125	63	-63	3	e e	α.				c		c							7.7	+		+ 144	4 ×			
355 400			-299	-350	-182	-214	-265	86-	-119	151	-43	- 54	1 9	25	98—	57	68-	-140 H	±12.5 ±18		+58 +	4+	+	+21 +	+21	+37	37 +62		0 4	I	1	<u> </u>
400 450	—760 —915				-135		-135	89-	89-	89-	-20							0	4								'					
450 500	-840	-480	-327	-385	-198	-232	-290	-108	-131	-165	-47	09-	-20	-27	-40	89	97	-155 <u>-</u>	H13.5		H H	+2	+2+	+23 +	+23	+40	40 +68	8 +172	2	I	1	1

1. General dimension tolerance for parts formed by press working from sheet metal JIS B 0408-1991-

Table 1. General dimension tolerances of punching Units: mm

Standard dimension		Grade	
Stanuaru unnension	Grade A	Grade B	Grade C
No more than 6	±0.05	±0.1	±0.3
More than 6 No more than 30	±0.1	±0.2	±0.5
More than 30 No more than 120	±0.15	±0.3	±0.8
More than 120 No more than 400	±0.2	±0.5	±1.2
More than 400 No more than 1000	±0.3	±0.8	±2
More than 1000 No more than 2000	±0.5	±1.2	±3

Note Grade A, B, and C are equivalent to tolerance grades f, m, and c in JIS B 0405.

Table 2. General dimensional tolerances of bending and drawing Units: mm

Standard dimension		Grade	
Standard difficusion	Grade A	Grade B	Grade C
No more than 6	±0.1	±0.3	±0.5
More than 6 No more than 30	±0.2	±0.5	±1
More than 30 No more than 120	±0.3	±0.8	±1.5
More than 120 No more than 400	±0.5	±1.2	±2.5
More than 400 No more than 1000	±0.8	±2	±4
More than 1000 No more than 2000	±1.2	±3	±6

Note Grade A, B, and C are equivalent to tolerance grades f, m, and c in JIS B 0405.

2. General tolerances for parts formed by shear from metal plates JIS B 0410-1991-

Table 1. General dimensional tolerances of cut widths

nits	

rabio ii donorai annon	ioioiiai toioit							Omto. mm
				Material thick	ness (t) class			
Ctandard dimension	t≦	1.6	1.6<	(t ≦ 3	3<	t ≦ 6	6 <t< td=""><td>≦12</td></t<>	≦ 12
Standard dimension				Gra	ade			
	Grade A	Grade B	Grade A	Grade B	Grade A	Grade B	Grade A	Grade B
No more than 30	±0.1	±0.3	_	_	_	_	_	_
More than 30 No more than 120	±0.2	±0.5	±0.3	±0.5	±0.8	±1.2	_	±1.5
More than 120 No more than 400	±0.3	±0.8	±0.4	±0.8	±1	±1.5	_	±2
More than 400 No more than 1000	±0.5	±1	±0.5	±1.2	±1.5	±2	_	±2.5
More than 1000 No more than 2000	±0.8	±1.5	±0.8	±2	±2	±3	_	±3
More than 2000 No more than 4000	±1.2	±2	±1.2	±2.5	±3	±4	_	±4

Table 2. General tolerances of straightness

Units: mm

				Material thick	ness (t) class			
Naminal dimension of aut launth	t≦	1.6	1.6<	<t≦3</t	3<	t ≦ 6	6 <t< td=""><td>≦12</td></t<>	≦12
Nominal dimension of cut length				Gra	ade			
	Grade A	Grade B	Grade A	Grade B	Grade A	Grade B	Grade A	Grade B
No more than 30	0.1	0.2	_	_	_	_	_	_
More than 30 No more than 120	0.2	0.3	0.2	0.3	0.5	0.8	_	1.5
More than 120 No more than 400	0.3	0.5	0.3	0.5	0.8	1.5	_	2
More than 400 No more than 1000	0.5	0.8	0.5	1	1.5	2	_	3
More than 1000 No more than 2000	0.8	1.2	0.8	1.5	2	3	_	4
More than 2000 No more than 4000	1.2	2	1.2	2.5	3	5	_	6

Table 3. General tolerances for perpendicularity

Units: mm

			Material thick	ness (t) class		
Nominal length of short	t≦	≦3	3<	t ≦ 6	6 <t< td=""><td>≦12</td></t<>	≦12
side			Gra	ade		
	Grade A	Grade B	Grade A	Grade B	Grade A	Grade B
No more than 30	_	_	_	_	_	_
More than 30 No more than 120	0.3	0.5	0.5	0.8	_	1.5
More than 120 No more than 400	0.8	1.2	1	1.5	-	2
More than 400 No more than 1000	1.5	3	2	3	_	3
More than 1000 No more than 2000	3	6	4	6	_	6
More than 2000 No more than 4000	6	10	6	10	1	10

STANDARD MACHINING TOLERANCES

Excerpts from JIS B 0405 (1991) JIS B 0419 (1991)

1. Regular cut dimension tolerance JIS B 0405 -1991-

Tolerances for length excluding chamfered portion

Units: mm

Toleran	ce class				Standard dim	ension range			
Symbol	Description	Over 0.5 (1) to 3 incl.	Over 3 to 6 incl.	Over 6 to 30 incl.	Over 30 to 120 incl.	Over 120 to 400 incl.	Over 400 to 1000 incl.	Over 1000 to 2000 incl.	Over 2000 to 4000 incl.
					Toler	ance			
f	Precision grade	±0.05	±0.05	±0.1	±0.15	±0.2	±0.3	±0.5	_
m	Medium class	±0.1	±0.1	±0.2	±0.3	±0.5	±0.8	±1.2	±2
C	Coarse class	±0.2	±0.3	±0.5	±0.8	±1.2	±2	±3	±4
V	Very coarse class	_	±0.5	±1	±1.5	±2.5	±4	±6	±8

Note (1): Tolerances for standard dimensions of less than 0.5 mm shall be specified individually.

2. Tolerance for length of chamfered portion (radius of rounding for edges and edge chamfering dimension) Hoits: mm

3. Angle tolerance

Ullul		u	• /	Units: mm
Toleran	ce class	Stand	ard dimension	range
		Over 0.5		
Symbol	Description	(²) to	Over 3 to 6 incl.	Over 6
Syllibol	Description	3 incl.		
			Tolerance	
f	Precision grade	±0.2	±0.5	±1
m	Medium class			<u> </u>
C	Coarse class	±0.4	±1	+2
V	Very coarse class	0.4	'	

	,							
Note (2):	Toleranc	es for	stand	lard	dimens	ions	of	less
()	than 0.5	mm sh	all be	snec	ified ind	ividu	allv	

Toleran	ice class		Length	of shorter side (of angle	
				(Units: mm)		
Symbol	Description	10 or less	Over 10 to 50 incl.	Over 50 to 120 incl.	Over 120 to 400 incl.	Over 400
			,	Tolerance	,	
f	Precision grade	±1°	±30′	±20´	±10′	± 5′
m	Medium class	<u> </u>	30		10	3
C	Coarse class	±1°30′	± 1°	±30′	±15′	±10′
V	Very coarse class	±3°	± 2°	± 1°	±30′	±20′

4. Regular perpendic	ularity tolerand	e JISB 0419 -	-1991—	Units: mm		
		Nominal length	on shorter side			
Tolerance class	100 or less	Over 100 to 300 incl.	Over 300 to 1000 incl.	Over 1000 to 3000 incl.		
Н	0.2	0.3	0.4	0.5		
K	0.4	0.6	0.8	1		
L	0.6	1	1.5	2		

5 Regular straightness and flatness tolerance IIS R 0/10 -1001-

J. Negulai silaigi	illicəə ailu ii	สเมษาง เบเษา	TIICE JIS D U	419 — 1991 —		Units: mm		
			Nomina	l length				
Tolerance class	10 or less	10 or less						
			Straightness and	flatness tolerance				
Н	0.02	0.05	0.1	0.2	0.3	0.4		
K	0.05	0.1	0.2	0.4	0.6	0.8		
L	0.1	0.2	0.4	0.8	1.2	1.6		

6. Regular symmetry	/ tolerance			Units: mm
		Nomina	al length	
Tolerance class	100 or less	Over 100 to 300 incl.	Over 300 to 1000 incl.	Over 1000 to 3000 incl.
		Symmetry	tolerance	
Н		0	.5	
K	().6	0.8	1
L	0.6	1	1.5	2

1. Names of parts

f (Max.) = 1.7r (Max.) $r (Max.) = \frac{da (Max.) - ds (Max.)}{2}$

r (Min.) = As shown in provided table

Units: mm

Thre	ad nominal (d) (²)	M3	M4	M5	M6	M8	M10	M12	(M14)	M16	(M18)	M20	(M22)	M24	(M27)	M30
Thi	ead pitch (P)	0.5	0.7	0.8	1	1.25	1.5	1.75	2	2	2.5	2.5	2.5	3	3	3.5
b	Reference	18	20	22	24	28	32	36	40	44	48	52	56	60	66	72
	Max. (standard dimension) *	5.5	7	8.5	10	13	16	18	21	24	27	30	33	36	40	45
dk	Max.**	5.68	7.22	8.72	10.22	13.27	16.27	18.27	21.33	24.33	27.33	30.33	33.39	36.39	40.39	45.39
	Min.	5.32	6.78	8.28	9.78	12.73	15.73	17.73	20.67	23.67	26.67	29.67	32.61	35.61	39.61	44.61
da	Max.	3.6	4.7	5.7	6.8	9.2	11.2	13.7	15.7	17.7	20.2	22.4	24.4	26.4	30.4	33.4
4	Max. (standard dimension)	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
ds	Min.	2.86	3.82	4.82	5.82	7.78	9.78	11.73	13.73	15.73	17.73	19.67	21.67	23.67	26.67	29.67
е	Min.	2.87	3.44	4.58	5.72	6.86	9.15	11.43	13.72	16.00	16.00	19.44	19.44	21.73	21.73	25.15
f	Max.	0.51	0.60	0.60	0.68	1.02	1.02	1.45	1.45	1.45	1.87	2.04	2.04	2.04	2.89	2.89
k	Max. (standard dimension)	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
ĸ	Min.	2.86	3.82	4.82	5.70	7.64	9.64	11.57	13.57	15.57	17.57	19.48	21.48	23.48	26.48	29.48
r	Min.	0.1	0.2	0.2	0.25	0.4	0.4	0.6	0.6	0.6	0.6	0.8	0.8	0.8	1	1
	Nominal (standard dimension)	2.5	3	4	5	6	8	10	12	14	14	17	17	19	19	22
S	Min.	2.52	3.02	4.02	5.02	6.02	8.025	10.025	12.032	14.032	14.032	17.050	17.050	19.065	19.065	22.065
5	Max. Section	2.580	3.080	4.095	5.140	6.140	8.175	10.175	12.212	14.212	14.212	17.230	17.230	19.275	10.075	22.275
	(1) Section (2.560	3.080	4.095	5.095	6.095	8.115	10.115	12.142	14.142	14.142	17.230	17.230	19.275	19.275	22.275
t	Min.	1.3	2	2.5	3	4	5	6	7	8	9	10	11	12	13.5	15.5
٧	Max.	0.3	0.4	0.5	0.6	0.8	1	1.2	1.4	1.6	1.8	2	2.2	2.4	2.7	3
dw	Min.	5.07	6.53	8.03	9.38	12.33	15.33	17.23	20.17	23.17	25.87	28.87	31.81	34.81	38.61	43.61
W	Min.	1.15	1.4	1.9	2.3	3.3	4	4.8	5.8	6.8	7.7	8.6	9.5	10.4	12.1	13.1

Note (1): Section 1 for "s (Max.)" applies to bolts with strength class 8.8 and 10.9 and property class A2-50 and A2-70. Section 2 applies to bolts with strength class 12.9. However, based on agreement between the parties involved in the delivery, Section 1 may be applied to bolts with strength

s (Max.) for bolts of nominal size M20 or larger applies to bolts of all strength classes and property classes.

Note (2): Nominal sizes shown in () should not be used whenever possible.

Remarks 1. Add a straight knurl or diamond knurl (refer to JIS B 0951 (KNURLING)) to the sides of the head. In this case, dk (Max.) is the value marked by ** in this table.

If a bolt without knurling is required, it shall be specified by the ordering party. However the d_k (Max.) is the value marked by * in this table.

- 2. The recommended length (ℓ) for the nominal thread size shall be enclosed in a bold line. For cases in which L is shorter than the position of the dotted line, full thread shall be used and the length of the incomplete thread part under the head shall be approximately 3P.
- 3. ℓg (Max.) and ℓs (Min.) for cases of a nominal length (ℓ) longer than the position of the dotted line shall be determined by the following formula.

 $\ell g (Max.) = Nominal length (\ell) - b$

 $\ell s (Min.) = \ell g (Max.) - 5P$

2. L, $\ell s,$ and ℓg of hexagon socket head cap screws

Units: mm

Sept Minimax Minimax	Threa	d nomir	nal (d)	M	3	IV	14	N	15	IV	16	IV	18	M	10	M	12	(M	14)	M	16	(M	18)	M	20	(M	22)	M	24	(M	27)	M	30
September Minimax Mi		L														٤s	Min.	and	eg Ma	Χ.													
6 5.76 6.24	Nominal length	min.	max.																														ℓg max.
10 971 1029																																	
10 9.71 10.29																																	
116 1565 1635																																	
16																																	
20																																	
25																																	
30 29.58 30.42 9.5 12 65 10 4 8																																	
35 34.5 35.5						ļ		ļ																									
40 39.5 40.5	30			9.5	12	6.5	10	4	8																								
45 44.5 45.5 19 23 16 21 10.75 17 55 13 N						11.5		9	13	6																							
50 49.5 50.5 24 28 21 26 15.7 22 10.5 18	40					16.5	20	_	_			5.75	12																				
55 54.4 55.6 26 31 20.7 27 15.5 23 10.5 19								19	_	_	_	_																					
60 594 60.6 31 36 25.75 32 20.5 28 15.25 24 10 20		49.5						24	28	21	26	15.75	22	10.5	18																		
65 644 65.6										26	31	20.75	27	15.5																			
70 694 70.6 90 80.7 70 694 70.6 90 80.5 42 30.5 52 40.5 52 40.5 44 30.2 44 30 40 26 95. 22										31	36	25.75	32	20.5				10	20														
80 79.4 80.6 45.75 52 40.5 48 35.25 44 30 40 26 36 19.5 28 11.5 24		64.4										30.75	37	25.5				15				4.5	17										
90 89.3 90.7		69.4											42	30.5																			
100 993 100.7												45.75	52	40.5	48	35.25		30					32	15.5	28	11.5	24						
110 1093 110.7	90	89.3	90.7											50.5	58	45.25	54	40	50				42	25.5	38	21.5	34	15	30	9	24		
120 119.3 120.7														60.5	68																		
130 1292 130.8 80 90 76 86 69.5 82 65.5 78 61.5 74 55 70 49 64 40.5 140 1392 140.8 90 100 86 96 79.5 92 75.5 88 71.5 84 65 80 59 74 50.5 150 1492 150.8 96 106 89.5 102 85.5 98 81.5 94 75 90 69 84 60.5 160 1592 160.8 1792 180.8 1792 180.8 1792 180.8 180 1792 180.8 1793 174 170.5 174 17	110	109.3	110.7													66.25	74	60	70			49.5	62	45.5	58	41.5	54	35	50	29	44	20.5	38
140 139.2 140.8 90 100 86 96 79.5 92 75.5 88 71.5 84 65 80 59 74 50.5 150 149.2 150.8 96 106 116 99.5 102 85.5 98 81.5 94 75 90 69 84 60.5 160 159.2 160.8 91.5 108 91	120	119.3	120.7													75.25	84	70	80			59.5	72	55.5	68	51.5		45	60		54	30.5	48
150 1492 150.8 196 106 89.5 102 85.5 98 81.5 94 75 90 69 84 605 160 1592 160.8 106 116 99.5 112 95.5 108 91.5 104 85 100 79 94 705 180 1792 180.8 119.5 132 115.5 128 111.5 124 105 120 99 114 90.5 1 200 199.05 200.95 120 219.05 220.95 240 239.05 240.95 120 219.05 261.05	130	129.2	130.8															80	90	76	86	69.5	82	65.5	78	61.5	74	55	70	49	64	40.5	58
150 1492 150.8 196 106 89.5 102 85.5 98 81.5 94 75 90 69 84 605 160 1592 160.8 106 116 99.5 112 95.5 108 91.5 104 85 100 79 94 705 180 1792 180.8 119.5 132 115.5 128 111.5 124 105 120 99 114 90.5 1 200 199.05 200.95 120 219.05 220.95 240 239.05 240.95 120 219.05 261.05	140	139.2	140.8															90	100	86	96	79.5	92	75.5	88	71.5	84	65	80		74	50.5	68
180 179.2 180.8 119.5 122 115.5 128 111.5 124 105 120 99 114 90.5 1 200 199.05 200.95 135.5 148 131.5 144 125 140 119 134 105.5 1 200 219.05 220.95 139.5 149.5 149.5 149.5 1 149.5 1 149.5 1 1 159.5 149.5 1 1 159.5 1 159.5 1 1 159.5 1	150	149.2	150.8																	96	106	89.5	102	85.5	98	81.5	94	75	90	69	84	60.5	78
200 199.05 200.95 135.5 148 131.5 144 125 140 119 134 110.5 1 220 219.05 220.95 139 154 150.5 1 1 150.5 1 1 150.5 1 1 160.5 1 1 160.5 1 1 1 150.5 1 1 1 105.5 1 <td< td=""><td>160</td><td>159.2</td><td>160.8</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>106</td><td>116</td><td>99.5</td><td>112</td><td>95.5</td><td>108</td><td>91.5</td><td>104</td><td>85</td><td>100</td><td>79</td><td>94</td><td>70.5</td><td>88</td></td<>	160	159.2	160.8																	106	116	99.5	112	95.5	108	91.5	104	85	100	79	94	70.5	88
220 219.05 220.95 139 154 130.5 1 240 239.05 240.95 159 174 150.5 1 260 258.95 261.05 179 194 170.5 1	180	179.2	180.8																			119.5	132	115.5	128	111.5	124	105	120	99	114	90.5	108
240 239.05 240.95 159 174 150.5 1 260 258.95 261.05 179 194 170.5 1	200	199.05	200.95																					135.5	148	131.5	144	125	140	119	134	110.5	128
260 258.95 261.05 179 194 170.5 1	220	219.05	220.95																											139	154	130.5	148
	240	239.05	240.95																											159	174	150.5	168
280 278 95 281 05	260	258.95	261.05																											179	194	170.5	188
200 210.00 201.00	280	278.95	281.05																											199	214	190.5	208
300 298.95 301.05 219 234 2105 2	300	298.95	301.05																											219	234	210.5	228

Reference: Dimensions of counterbore and bolt holes for hexagon socket head cap screws

														Units	: mm
Thread nominal (d)	M3	M4	M5	M6	M8	M10	M12	M14	M16	M18	M20	M22	M24	M27	M30
ds	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
ď	3.4	4.5	5.5	6.6	9	11	14	16	18	20	22	24	26	30	33
dk	5.5	7	8.5	10	13	16	18	21	24	27	30	33	36	40	45
D´	6.5	8	9.5	11	14	17.5	20	23	26	29	32	35	39	43	48
k	3	4	5	6	8	10	12	14	16	18	20	22	24	27	30
Η´	2.7	3.6	4.6	5.5	7.4	9.2	11	12.8	14.5	16.5	18.5	20.5	22.5	25	28
H″	3.3	4.4	5.4	6.5	8.6	10.8	13	15.2	17.5	19.5	21.5	23.5	25.5	29	32
d2	2.6	3.4	4.3	5.1	6.9	8.6	10.4	12.2	14.2	15.7	17.7	19.7	21.2	24.2	26.7

[TECHNICAL DATA] TABLE OF HOLE SIZES BEFORE THREADING

1. Metric coarse thread

1. Metric coarse thro	ead				
Nominal thread size	Minimum dimension	Maximum	dimension		
Nominai tiireau size	Grade 2 / Grade 3	Grade 2	Grade 3		
M 1×0.25	0.73	0.78	_		
M 1.1 × 0.25	0.83	0.89	_		
M 1.2 × 0.25	0.93	0.98	_		
M 1.4×0.3	1.08	1.14	_		
M 1.6 × 0.35	1.22	1.32	_		
M 1.7 × 0.35	1.33	1.42	_		
M 1.8 × 0.35	1.42	1.52	_		
M 2×0.4	1.57	1.67	_		
M 2.2 × 0.45	1.71	1.84	_		
M 2.3×0.4	1.87	1.97	_		
M 2.5×0.45	2.01	2.14	_		
M 2.6 × 0.45	2.12	2.23	_		
M 3×0.5	2.46	2.60	2.64		
M 3.5 × 0.6	2.85	3.01	3.05		
M 4×0.7	3.24	3.42	3.47		
M 4.5 × 0.75	3.69	3.88	3.92		
M 5 × 0.8	4.13	4.33	4.38		
M 6×1	4.92	5.15	5.22		
M 7×1	5.92	6.15	6.22		
M 8 × 1.25	6.65	6.91	6.98		
M 9×1.25	7.65	7.91	7.98		
M 10×1.5	8.38 9.38	8.68	8.75 9.75		
M 11 × 1.5	9.30	9.68	9.75		
M 12×1.75	10.11	10.44	10.53		
M 14×2	11.84	12.21	12.31		
M 16×2	13.84	14.21	14.31		
M 18 × 2.5	15.29	15.74	15.85		
M 20 × 2.5	17.29	17.74	17.85		
M 22 × 2.5	19.29	19.74	19.85		
M 24×3	20.75	21.25	21.38		
M 27×3	23.75	24.25	24.38		
M 30 × 3.5	26.21	26.77	26.92		
M 33 × 3.5	29.21	29.77	29.92		
M 36×4	31.67	32.27	32.42		
M 39 × 4	34.67	35.27	35.42		
M 42 × 4.5	37.13	37.80	37.98		
M 45 × 4.5	40.13	40.80	40.98		
M 48×5	42.59	43.30	43.49		

2. Metric fine thread

Nominal thread size	Minimum dimension	Maximum	dimension
Nullillai tiireau size	Grade 2 / Grade 3	Grade 2	Grade 3
M 2.5 × 0.35	2.12	2.22	_
M 3 × 0.35	2.62	2.72	_
M 3.5 × 0.35	3.12	3.22	_
M 4×0.5	3.46	3.60	3.64
M 4.5×0.5	3.96	4.10	4.14
M 5×0.5	4.46	4.60	4.64
M 5.5 × 0.5	4.96	5.10	5.14
M 6×0.75	5.19	5.38	5.42
M 7×0.75	6.19	6.38	6.42
M 8×1	6.92	7.15	7.22
M 8×0.75	7.19	7.38	7.42
M 9×1	7.92	8.15	8.22
M 9×0.75	8.19	8.38	8.42
14 403744.05	0.05	0.04	
M 10 × 1.25	8.65	8.91	8.98
M 10×1	8.92	9.15	9.22
M 10 × 0.75	9.19	9.38	_
M 11×1	9.92	10.15	10.22
M 11 × 0.75	10.19	10.38	10.42
W 11 × 0.75	10.13	10.50	10.42
M 12×1.5	10.38	10.68	10.75
M 12 × 1.25	10.65	10.91	10.98
M 12×1	10.92	11.15	11.22
M 14×1.5	12.38	12.68	12.75
M 14×1	12.92	13.15	13.22
M 15×1.5	13.38	13.68	13.75
M 15×1	13.92	14.15	14.22

Nominal thread size	Minimum dimension	Maximum	dimension
	Grade 2 / Grade 3	Grade 2	Grade 3
M 16×1.5	14.38	14.68	14.75
M 16×1	14.92	15.15	15.22
M 17×1.5	15.38	15.68	15.75
M 17×1	15.92	16.15	16.22
M 18×2	15.84	16.21	16.31
M 18×1.5	16.38	16.68	16.75
M 18×1	16.92	17.15	17.22
M 20×2	17.84	18.21	18.31
M 20×1.5	18.38	18.68	18.75
M 20×1	18.92	19.15	19.22
M 22 × 2	19.84	20.21	20.31
M 22 × 1.5	20.38	20.68	20.75
M 22 × 1	20.92	21.15	21.22
	21.84	22.21	22.31
	22.38	22.68	22.75
	22.92	23.15	23.22
M 25×2	22.84	23.21	23.31
M 25×1.5	23.38	23.68	23.75
M 25×1	23.92	24.15	24.22
M 26×1.5	24.38	24.68	24.75
M 27 × 2	24.84	25.21	25.31
M 27 × 1.5	25.38	25.68	25.75
M 27 × 1	25.92	26.15	26.22
M 28 × 2	25.84	26.21	26.31
M 28 × 1.5	26.38	26.68	26.75
M 28 × 1	26.92	27.15	27.22
	26.75	27.25	27.38
	27.84	28.21	28.31
	28.38	28.68	28.75
	28.92	29.15	29.22
$\begin{array}{ll} M & 32 \times 2 \\ M & 32 \times 1.5 \end{array}$	29.84	30.21	30.31
	30.38	30.68	30.75
M 33 × 3	29.75	30.25	30.38
M 33 × 2	30.84	31.21	31.31
M 33 × 1.5	31.38	31.68	31.75
M 35×1.5	33.38	33.68	33.75
M 36 × 3	32.75	33.25	33.38
M 36 × 2	33.84	34.21	34.31
M 36 × 1.5	34.38	34.68	34.75
M 38×1.5	36.38	36.68	36.75
M 39×3	35.75	36.25	36.38
M 39×2	36.84	37.21	37.31
M 39×1.5	37.38	37.68	37.75
M 40 × 3	36.75	37.25	37.38
M 40 × 2	37.84	38.21	38.31
M 40 × 1.5	38.38	38.68	38.75
	37.67	38.27	38.42
	38.75	39.25	39.38
	39.84	40.21	40.31
	40.38	40.68	40.75
	40.67	41.27	41.42
	41.75	42.25	42.38
	42.84	43.21	43.31
	43.38	43.68	43.75
M 48×4	43.67	44.27	44.42
M 48×3	44.75	45.25	45.38
M 48×2	45.84	46.21	46.31
M 48×1.5	46.38	46.68	46.75
M 50 × 3	46.75	47.25	47.38
M 50 × 2	47.84	48.21	48.31
M 50 × 1.5	48.38	48.68	48.75

[TECHNICAL DATA] PROPER BOLT AXIAL TIGHTENING FORCE / TORQUE

Axial tightening force and fatigue limit when fastening with bolts

- · When calculating the suitable axial tightening force for bolt tightening, the maximum force shall be 70% of the standard proof strength using the torque control method, and the force shall be within the elastic range.
- · Bolt fatigue strength under repeated load must not exceed the maximum allowable value.
- •The bolt and nut seat must not cause any depression in the fastened part.
- · Tightening must not cause any damage to the fastened part.

Methods of bolt tightening include the torque control method, torque gradient control method, rotation angle control method, and extension measurement method. The torque control method is most commonly used, due to its simplicity.

■Calculation of axial tightening force and tightening torque

The relationship of axial tightening force Ff is shown by Formula(1). k : Torque coefficient $Ff=0.7\times\sigma$ y×As ······ (1)

Tightening torque T_{fA} is found from Formula (2).

 $T_{fA}=0.35k(1+1/Q) \sigma v \cdot As \cdot d \cdot \cdots (2)$

: Bolt nominal diameter[cm]

Q : Tightening coefficient

 σ y: Proof strength (112 kgf/mm² for strength class 12.9)

As : Bolt effective cross-section area [mm2]

■Sample calculation

Find the suitable torque and axial force when using an M6 hexagon socket head cap screw (strength class 12.9) to fasten soft steel, and tightening with oil lubrication.

 $\bullet \text{The suitable torque is found by Formula (2), as shown below.} \quad \bullet \text{Axial force Ff is found from Formula (1), as shown below.}$

 $T_{fA}=0.35k(1+1/Q) \sigma v \cdot As \cdot d$ $=0.35 \cdot 0.17(1+1/1.4)112 \cdot 20.1 \cdot 0.6$

 $Ff=0.7\times \sigma v\times As$ 0.7×112×20.1

1576 [kgf]

Tiahtenina

 $=138[kgf \cdot cm]$

Torque coefficient based on the combination of bolt surface treatment, tightened parts, and internal thread material

Bolt Surface treatment Lubrication	coefficient k	Tightened part material—Female screw material (a) (b)
	0.145	SCM—FC FC—FC SUS—FC
Steel bolt	0.155	S10C-FC SCM-S10C SCM-SCM FC-S10C FC-SCM
Black oxide	0.165	SCM-SUS FC-SUS AL-FC SUS-S10C SUS-SCM SUS-SUS
coating		S10C-S10C S10C-SCM S10C-SUS AL-S10C AL-SCM
Not lubricated	0.185	SCM—AL FC—AL AL—SUS
lubilicateu	0.195	S10C—AL SUS—AL
	0.215	AL—AL
Steel bolt	0.25	S10C-FC SCM-FC FC-FC
Black oxide	0.35	S10C-FC SCM-S10C SCM-SCM FC-S10C FC-SCM
coating Not	0.45	S10C-S10C SCM-S10C AL-S10C AL-SCM
lubricated	0.55	SCM—AL FC—AL AL—AL
S10C: Non-heat-tre	ated soft steel	SCM: Heat treated steel (35HRC) FC: Cast iron (FC200) AL: Aluminum SUS: Stainless steel (sus304)

1.25	Torque wrench	Manganese phosphate		
1.4	Torque wrench	Hataataa a		Not lubricated
1.4	Torque wrench with torque limiter	Untreated or phosphate	phosphate	or MoS2 paste
1.6	Impact wrench	phoophato		
1.8	Torque wrench	Untreated or	Untreated	Not lubricated
1.0	Torque wrench with torque limiter	phosphate	Uniteateu	Not lubilicated
Ind	lication the atuenath o	lana		

Indicating the strength class

Example: 12.9

■Standard value for tightening coefficient Q

Tightening method

Proof strength (yield stress): 90% of minimum tensile strength Minimum tensile strength is 1220 N/mm² {124kgf/mm²} 10.9

Surface condition

Lubrication

Proof strength (yield stress): 90% of minimum tensile strength Minimum tensile strength is 1040 N/mm² {106kgf/mm²}

■Initial tightening force and tightening torque

	Effective cross-						Strengt	h class					
Nominal	section area		12.9			10.9			8.8			4.8	
thread size	As	Yield load	Initial tightening force	Tightening torque	Yield load	Initial tightening force	Tightening torque	Yield load	Initial tightening force	Tightening torque	Yield load	Initial tightening force	Tightening torque
	mm ²	kgf	kgf	kgf • cm									
M 3×0.5	5.03	563	394	17	482	338	15	328	230	10	175	122	5
M 4×0.7	8.78	983	688	40	842	589	34	573	401	23	305	213	12
M 5×0.8	14.2	1590	1113	81	1362	953	69	927	649	47	493	345	25
M 6×1	20.1	2251	1576	138	1928	1349	118	1313	919	80	697	488	43
M 8×1.25	36.6	4099	2869	334	3510	2457	286	2390	1673	195	1270	889	104
M10×1.5	58	6496	4547	663	5562	3894	567	3787	2651	386	2013	1409	205
M12×1.75	84.3	9442	6609	1160	8084	5659	990	5505	3853	674	2925	2048	358
M14×2	115	12880	9016	1840	11029	7720	1580	7510	5257	1070	3991	2793	570
M16×2	157	17584	12039	2870	15056	10539	2460	10252	7176	1670	5448	3814	889
M18×2.5	192	21504	15053	3950	18413	12889	3380	12922	9045	2370	6662	4664	1220
M20×2.5	245	27440	19208	5600	23496	16447	4790	16489	11542	3360	8502	5951	1730
M22×2.5	303	33936	23755	7620	29058	20340	6520	20392	14274	4580	10514	7360	2360
M24×3	353	39536	27675	9680	33853	23697	8290	23757	16630	5820	12249	8574	3000

Note: •Tightening condition: Tightened by torque wrench. (Surface oil lubrication Torque coefficient k=0.17 Tightening coefficient Q=1.4)

- · Because the torque coefficient varies depending on the conditions of use, use this table only as an approximate guide.
- This table consists of edited excerpts from the Catalog of Kyokuto MFG Co Ltd.

[TECHNICAL DATA] STRENGTH OF BOLTS, SCREW PLUGS, AND DOWEL PINS

■Bolt strenath

1) When bolt is subjected to tensile load

$$Pt = \sigma t \times As \cdots (1)$$

= $\pi d^2 \sigma t/4 \cdots (2)$

Pt	:	Tensile	load	in	axial	direction	[kgf]
- h	٠.	Dol+ vic	Id of	roi	oc Flor	f/mm27	

 σ t : Bolt maximum allowable stress [kgf/mm²]

(σ t= σ b/(safety factor α)) As: Bolt effective cross-section area[mm²] As= π d²/4

d : Bolt effective diameter (root diameter) [mm]

 \blacksquare Unwin safety factor α based on tensile strength

М	Static	Repeat	Impact	
Ш	load	Pulsating	Alternating	load
Steel	3	5	8	12
Cast iron	4	6	10	15
Copper, soft metals	5	5	9	15

 $Shear stress = \frac{Standard strength}{Safety factor \, \alpha} \frac{Standard strength: For ductile materials = Yield stress}{For brittle materials} = Fracture stress$

Example: Find a suitable size for a single hexagon socket head cap screw that will be subjected to repeated (pulsating) tensile loads of P=200~kgf. (Hexagon socket head cap screw material: SCM435, 38 \sim 43 HRC, strength class 12.9)

As=Pt/
$$\sigma$$
t
=200/22.4
=8.9[mm²]

Finding the effective cross-section area larger than this value from the table at right shows that a 14.2 [mm²] M5 cap screw should be selected.

With additional consideration for the fatigue strength, and based on the strength class of 12.9 in the table, we select an M6 screw with maximum allowable load of 213 kgf.

2) For stripper bolts and others which are subjected to tensile impact loads, the selection is made based on the fatigue strength. (The bolt is subjected to 200 kgf loads in the same way. Stripper bolt material: SCM 435 33~38 HRC, strength class 10.9.)

From the table at right, for a strength class of 10.9 and a maximum allowable load of 200 kgf, the suitable bolt is a 318[kgf]M8. Therefore we select a 10 mm MSB10 with a M8 thread section. When the bolt is subjected to shear load, also use a dowel pin.

Yield stress for strength class 12.9 σ b=112[kgf/mm²] Maximum allowable stress σ t= σ b/(safety factor) (From table above, safety factor=5) =112/5 =22.4[kgf/mm²]

■ Bolt fatigue strength(For threads: fatigue strength = count of 2 million)

	Effective		Strengt	h class			
Nominal thread	cross-section area	12	.9	10.9			
size	As	Fatigue strength*	Maximum allowable load	Fatigue strength*	Maximum allowable load		
0120	mm²	kgf/mm²	kgf	kgf/mm²	kgf		
M 4	8.78	13.1	114	9.1	79		
M 5	14.2	11.3	160	7.8	111		
M 6	20.1	10.6	213	7.4	149		
M 8	36.6	8.9	326	8.7	318		
M10	58	7.4	429	7.3	423		
M12	84.3	6.7	565	6.5	548		
M14	115	6.1	702	6	690		
M16	157	5.8	911	5.7	895		
M20	245	5.2	1274	5.1	1250		
M24	353	4.7	1659	4.7	1659		

Fatigue strengths* have been excerpted from "Estimated values of fatigue limits for metal threads of small screws, bolts, and nuts" (Yamamoto) and modified.

■Screw plug strength

Find the maximum allowable load P when a MSW30 screw plug is subjected to impact load. (MSW30 material: S45C, tensile strength σ b at 34 \sim 43 HRC 65 kgf/mm²)

Assuming fracture due to shear occurs at the MSW root diameter location, the maximum allowable load $P = \tau t \times A$.

 $=3.9 \times 107.4$ =4190[kgf]

When the tap is a soft materials, find the maximum allowable shear from the inside thread root diameter.

Shear cross-section area A=Root diameter $d_1 \times \pi \times L$	
(Root diameter d1≒M−P)	
$A = (M-P)_{\pi} L = (30-1.5)_{\pi} \times$	12
$=1074[mm^2]$	
Yield stress $\rightleftharpoons 0.9 \times \text{Tensile}$ strength σ b=0.9 \times 65=5	8.2
Shear stress	
=46.6	
Maximum allowable shear stress τ t=Shear stress / (Safety factor 1	2)

M Root diameter d1

\blacksquare Dowel pin strength

Find a suitable size for a single dowel pin which is subjected to repeated (pulsating) shear loads of 800 kgf. (Dowel pin material: SUJ2 hardness 58 HRC or higher)

P=A ×
$$\tau$$

= π D² τ /4
D= $\sqrt{(4P)/(\pi \tau)}$
= $\sqrt{(4\times800)/(3.14\times19.2)}$

SUJ2 yield stress capability σ b=120[kgf/mm²] Maximum allowable shear strength $\tau = \sigma$ b×0.8/(Safety factor α) =120×0.8/5 =19.2[kgf/mm²]

∴ For an MS dowel pin, select a size of D8 or larger.
In addition, selecting a single size for all dowel pins makes it possible to reduce items such as tools and inventory.

Do not use in such a way that load is applied to the threads.

The information provided here is only an example of calculating the strength. For actual selections, it is necessary to consider the hole pitch accuracy, hole perpendicularity, surface roughness, true roundness, plate material, parallelism, use of hardening, accuracy of the press machine, product production volume, tool wear, and various other conditions. Therefore the strength calculation value should be used only as a guide. (It is not a guaranteed value.)

[TECHNICAL DATA] CALCULATION OF CUBIC VOLUME AND MATERIAL PHYSICAL PROPERTIES

3D shape	Volume V	3D shape	Volume V	3D shape	Volume V
Truncated cylinder	$V = \frac{\pi}{4} d^2h$ $= \frac{\pi}{4} d^2 \left(\frac{h_1 + h_2}{2} \right)$	Ellipsoidal ring	$V = \frac{\pi^2}{4} d^2 \frac{\sqrt{a^2 + b^2}}{2}$	Conical section of sphere	$V = \frac{2}{3} \pi r^{2} h$ = 2.0944r ² h
Pyramid	V=\frac{h}{3} A=\frac{h}{6} arn A=Bottom surface area r=Radius of inscribed circle a=Length of 1 side of regular polygon n=Number of regular polygon sides	Crossing cylinders	$V = \frac{\pi}{4} d^2 (\ell + \ell' \frac{d}{3})$	Circular ring	$V=2 \pi^{2} Rr^{2}$ =19.739Rr ² =\frac{\pi^{2}}{4} Dd^{2} =2.4674Dd^{2}
Spherical crown	$V = \frac{\pi h^2}{3} (3r - h)$ $= \frac{\pi h}{6} (3a^2 + h^2)$ a is the radius.	Hollow cylinder (tube)	$V = \frac{\pi}{4} h (D^2 - d^2)$ $= \pi th (D - t)$ $= \pi th (d + t)$	Cone	$V = \frac{\pi}{3} r^2 h$ $= 1.0472 r^2 h$
Ellipsoidal body	$V = \frac{4}{3} \pi \text{ abc}$ In the case of a rotating ellipsoidal body (b=c): $V = \frac{4}{3} \pi \text{ ab}^2$	Truncated pyramid	$V = \frac{h}{3}(A + a + \sqrt{Aa})$ A,a=Surface area of each end	Sphere	$V = \frac{4}{3} \pi r^3 = 4.1888 r^3$ $= \frac{\pi}{6} d^3 = 0.5236 d^3$

3D shape	Volume V
Zone of sphere	$V = \frac{\pi h}{6} (3a^2 + 3b^2 + h^2)$
Barrel shape	When curve has circumference that is an arc: $V = \frac{\pi \ \ell}{12} (2D^2 + d^2)$ When curve has circumference that is a parabola $V = 0.209\ell (2D^2Dd + 1/4d^2)$

Finding the weight

Weight $W[g] = Volume[cm^3] \times Density$

■Physical properties of metal materials

M	Density [g/cm ³]	Young's modulus E [kgf/mm²]	Coefficient of thermal expansion [M10 ⁻⁶ /°C]
Soft steel	7.85	21000	11.7
SKD11	7.85	21000	11.7
Powdered high-speed steel (HAP40)	8.07	23300	10.1
Carbide V30	14.1	56000	6.0
Cast iron	7.3	7500 ~ 10500	9.2 ~ 11.8
SUS304	8.0	19700	17.3
Oxygen-free copper C1020	8.9	11700	17.6
6/4 brass C2801	8.4	10300	20.8
Aluminum A1100	2.7	6900	23.6
Duralumin A7075	2.8	7200	23.6
Titanium	4.5	10600	8.4

$1 \text{kgf/mm}^2 = 9.80665 \times 10^6 \text{ Pa}$

Example: Material: SKD11

Example: The amount of dimensional change δ which occurs when a pin of $D = \phi 2$, L = 100 mm is heated to 100% is the following

is heated to 100°C is the following. δ = Coefficient of thermal expansion×Total length×Temperature change = 11.7×10⁻⁶×100 mm×100°C = 0.117 cm³.

Finding dimensional changes resulting from thermal expansion Finding dimensional changes resulting from Young's modulus E

Example: Find strain λ when load P=1000 kgf is applied to a ϕ 10 \times L60 pin. (Material: SKD11)

[TECHNICAL DATA] CALCULATION OF AREA, CENTER OF GRAVITY, AND GEOMETRICAL MOMENT OF INERTIA

Cross section	Cross section area A	Distance of center of gravity e	Geometrical moment of inertia I	Cross section modulus Z=I/e
	bh	<u>h</u> 2	bh ³ 12	<u>bh²</u>
h _ h	h ²	<u>h</u> 2	<u>h</u> ⁴ 12	<u>h</u> ³ 6
	h ²	$\frac{h}{2}\sqrt{2}$	<u>h</u> ⁴ 12	$0.1179 \ h^3 = \frac{\sqrt{2}}{12} h^3$
ω <u> </u>	<u>bh</u> 2	2/3 h	<u>bh³</u> 36	<u>bh²</u> 24
$\begin{array}{c c} b \\ \hline \underline{b_1} \\ \hline \underline{2} \\ \end{array}$	$(2b+b_1)\frac{h}{2}$	$\frac{1}{3} \times \frac{3b+2b_1}{2b+b_1} h$	$\frac{6b^2 + 6bb_1 + b_1^2}{36(2b+b_1)}h^3$	$\frac{6b^2 + 6bb_1 + b_1^2}{12(3b + 2b_1)}h^2$
φ†	$\frac{3\sqrt{3}}{2}$ r ²	$\sqrt{\frac{3}{4}}$ r=0.866 r	$\frac{5\sqrt{3}}{16}r^4 = 0.5413 r^4$	$\frac{5}{8}$ r ³
	$=2.598 \text{ r}^2$	r	16 1 - 0.3413 1	$\frac{5\sqrt{3}}{16}r^3 = 0.5413r^3$
œ <u> </u>	2.828 r ²	0.924 r ²	$\frac{1+2\sqrt{2}}{6}r^4$ =0.6381 r^4	0.6906r ³
	0.8284 a ²	$b = \frac{a}{1 + \sqrt{2}} = 0.4142 \text{ a}$	0.0547 a ⁴	0.1095a ³
d a	$\pi r^2 = \frac{\pi d^2}{4}$	<u>d</u> 2	$\frac{\pi d^4}{64} = \frac{\pi r^4}{4}$ =0.0491 d ⁴ $\stackrel{.}{=} 0.05 d^4$ =0.7854 r ⁴	$\frac{\pi d^{3}}{32} = \frac{\pi r^{3}}{4}$ =0.0982 d ³ \(\disp 0.1 d^{3}\) =0.7854 r ³
0 0 0	$r^2\left(1 - \frac{\pi}{4}\right)$ $= 0.2146 r^2$	e ₁ =0.2234 r e ₂ =0.7766 r	0.0075 r ⁴	$ \frac{0.0075 \text{ r}^4}{\text{e}_2} \\ = 0.00966 \text{r}^3 \\ = 0.01 \text{r}^3 $

Cross section	Cross section area A	Distance of center of gravity e	Geometrical moment of inertia I	Cross section modulus Z = I/e
p e	πab	a	$\frac{\pi}{4}$ ba ³ =0.7854 ba ³	$\frac{4}{\pi}$ ba ² =0.7854 ba ²
φ <u>2</u> τ	$\frac{\pi}{2}$ r ²	e ₁ =0.4244 r e ₂ =0.5756 r	$\left(\frac{\pi}{8} - \frac{8}{9\pi}\right) r^4$ $= 0.1098 r^4$	$Z_1 = 0.2587 ext{ r}^3$ $Z_2 = 0.1908 ext{ r}^3$
6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	$\frac{\pi}{4}$ r ²	e ₁ =0.4244 r e ₂ =0.5756 r	0.055 r ⁴	$Z_1 = 0.1296 \text{ r}^3$ $Z_2 = 0.0956 \text{ r}^3$
- D	b(H—h)	<u>H</u>	$\frac{b}{12} (H^3 - h^3)$	$\frac{b}{6H}(H^3 - h^3)$
A A	A^2-a^2	<u>A</u> 2	$\frac{A^4 - a^4}{12}$	$\frac{1}{6}\frac{A^4-a^4}{A}$
**************************************	A ² —a ²	$\frac{A}{2}\sqrt{2}$	$\frac{A^4 - a^4}{12}$	$= \frac{A^4 - a^4}{12 A} \sqrt{2}$ $= \frac{0.1179(A^4 - a^4)}{A}$
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\frac{\pi}{4}(d_2^2-d_1^2)$	<u>d2</u> 2	$\frac{\frac{\pi}{64}(d_2^4 - d_1^4)}{= \frac{\pi}{4}(R^4 - r^4)}$	$\frac{\pi}{32} \left(\frac{d\frac{4}{2} - d\frac{4}{1}}{d2} \right)$ $= \frac{\pi}{4} \times \frac{R^4 - r^4}{R}$
a a	$a^2 - \frac{\pi d^2}{4}$	<u>a</u> 2	$\frac{1}{12} \left(a^4 - \frac{3\pi}{16} d^4 \right)$	$\frac{1}{6a} \left(a^4 - \frac{3\pi}{16} d^4 \right)$
	$2b(h-d) + \frac{\pi}{4}d^2$	<u>h</u> 2	$ \frac{1}{12} \left\{ \frac{3\pi}{16} d^4 + b (h^3 - d^3) + b^3 (h - d) \right\} $	$ \frac{1}{6h} \left\{ \frac{3\pi}{16} d^4 + b (h^3 - d^3) + b^3 (h - d) \right\} $
	$2b(h-d) + \frac{\pi}{4}(d_1^2 - d^2)$	<u>h</u> 2	$\begin{aligned} &\frac{1}{12} \bigg\{ \frac{3\pi}{16} (d_1^4 - d^4) \\ &+ b \left(h^3 - d_1^3 \right) \\ &+ b^3 \left(h - d_1 \right) \bigg\} \end{aligned}$	$ \frac{1}{6}h \left\{ \frac{3\pi}{16} (d_1^4 - d^4) + b (h^3 - d_1^3) + b^3 (h - d_1) \right\} $

CONVERSION CHART OF TRIGONOMETRICAL FUNCTIONS

	50'	:12° NN' ~ 23°	deg (angle)=	Whor	θ (theta)		50'	=0° 00' ~ 11°	n deg (angle) =	Who	θ (theta)
	cot θ value	tan θ value	$\cos \theta$ value	sin θ value	deg (angle°)		$\cot \theta$ value	tan θ value	$\cos \theta$ value	sin θ value	deg (angle°)
78° 00'	4.7046	.2126	.9781	.2079	12° 00'	90° 00'	∞	.0000	1.0000	.0000	0° 00'
50	4.6382	.2156	.9775	.2108	10	50	343.77	.0029	1.0000	.0029	10
40	4.5736	.2186	.9769	.2136	20	40	171.89	.0058	1.0000	.0058	20
30	4.5107	.2217	.9763	.2164	30	30	114.59	.0087	1.0000	.0087	30
20	4.4494	.2247	.9757	.2193	40	20	85.940	.0116	0.9999	.0116	40
10	4.3897	.2278	.9750	.2221	50	10	68.750	.0145	.9999	.0145	50
77° 00'	4.3315	.2309	.9744	.2250	13° 00'	89° 00'	57.290	.0175	.9998	.0175	1° 00'
50	4.2747	.2339	.9737	.2278	10	50	49.104	.0204	.9998	.0204	10
40	4.2193	.2370	.9730	.2306	20	40	42.964	.0233	.9997	.0233	20
30	4.1653	.2401	.9724	.2334	30 40	30	38.188	.0262	.9997	.0262	30 40
20 10	4.1126	.2432 .2462	.9717	.2363 .2391		20	34.368 31.242	.0291	.9996 .9995	.0291 .0320	
76° 00'	4.0611 4.0108	.2493	.9710 .9703	.2419	50 14° 00'	10 88° 00'	28.636	.0349	.9994	.0320	2° 00'
50	3.9617	.2524	.9696	.2447	14 00	50	26.432	.0378	.9993	.0378	10
40	3.9136	.2555	.9689	.2476	20	40	24.542	.0407	.9992	.0407	20
30	3.8667	.2586	.9681	.2504	30	30	22.904	.0437	.9990	.0436	30
20	3.8208	.2617	.9674	.2532	40	20	21.470	.0466	.9989	.0465	40
10	3.7760	.2648	.9667	.2560	50	10	20.206	.0495	.9988	.0494	50
75° 00'	3.7321	.2679	.9659	.2588	15° 00'	87° 00'	19.081	.0524	.9986	.0523	3° 00'
50	3.6891	.2711	.9652	.2616	10	50	18.075	.0553	.9985	.0552	10
40	3.6470	.2742	.9644	.2644	20	40	17.169	.0582	.9983	.0581	20
30	3.6059	.2773	.9636	.2672	30	30	16.350	.0612	.9981	.0610	30
20	3.5656	.2805	.9628	.2700	40	20	15.605	.0641	.9980	.0640	40
10	3.5261	.2836	.9621	.2728	50	10	14.924	.0670	.9978	.0669	50
74° 00'	3.4874	.2867	.9613	.2756	16° 00'	86° 00'	14.301	.0699	.9976	.0698	4° 00'
50	3.4495	.2899	.9605	.2784	10	50	13.727	.0729	.9974	.0727	10
40	3.4124	.2931	.9596	.2812	20	40	13.197	.0758	.9971	.0756	20
30	3.3759	.2962	.9588	.2840	30	30	12.706	.0787	.9969	.0785	30
20	3.3402	.2994	.9580	.2868	40	20	12.251	.0816	.9967	.0814	40
10	3.3052 3.2709	.3026	.9572	.2896	50	10	11.826	.0846	.9964	.0843	50 5° 00'
73° 00' 50	3.2709	.3057 .3089	.9563	.2924	17° 00'	85° 00' 50	11.430 11.059	.0875 .0904	.9962 .9959	.0872 .0901	5° 00'
40	3.2041	.3121	.9555 .9546	.2952 .2979	10 20	40	10.712	.0904	.9959	.0929	10 20
30	3.1716	.3153	.9537	.3007	30	30	10.712	.0963	.9954	.0929	30
20	3.1397	.3185	.9528	.3035	40	20	10.078	.0992	.9951	.0987	40
10	3.1084	.3217	.9520	.3062	50	10	9.7882	.1022	.9948	.1016	50
72° 00'	3.0777	.3249	.9511	.3090	18° 00'	84° 00'	9.5144	.1051	.9945	.1045	6° 00'
50	3.0475	.3281	.9502	.3118	10	50	9.2553	.1080	.9942	.1074	10
40	3.0178	.3314	.9492	.3145	20	40	9.0098	.1110	.9939	.1103	20
30	2.9887	.3346	.9483	.3173	30	30	8.7769	.1139	.9936	.1132	30
20	2.9600	.3378	.9474	.3201	40	20	8.5555	.1169	.9932	.1161	40
10	2.9319	.3411	.9465	.3228	50	10	8.3450	.1198	.9929	.1190	50
71° 00'	2.9042	.3443	.9455	.3256	19° 00'	83° 00'	8.1443	.1228	.9925	.1219	7° 00'
50	2.8770	.3476	.9446	.3283	10	50	7.9530	.1257	.9922	.1248	10
40	2.8502	.3508	.9436	.3311	20	40	7.7704	.1287	.9918	.1276	20
30	2.8239	.3541	.9426	.3338	30	30	7.5958	.1317	.9914	.1305	30
20	2.7980	.3574	.9417	.3365	40	20	7.4287	.1346	.9911	.1334	40
10	2.7725	.3607	.9407	.3393	50	10	7.2687	.1376	.9907	.1363	50 0° 001
70° 00'	2.7475	.3640	.9397	.3420	20° 00'	82° 00'	7.1154	.1405	.9903	.1392	8° 00'
50	2.7228	.3673	.9387	.3448	10	50	6.9682 6.8269	.1435	.9899	.1421	10
40 30	2.6985 2.6746	.3706 .3739	.9377 .9367	.3475 .3502	20 30	40 30	6.8269	.1465 .1495	.9894 .9890	.1449	20 30
20	2.6511	.3772	.9356	.3529	40	20	6.5606	.1524	.9886	.1478 .1507	40
10	2.6279	.3805	.9346	.3557	50	10	6.4348	.1554	.9881	.1536	50
69° 00'	2.6051	.3839	.9336	.3584	21° 00'	81° 00'	6.3138	.1584	.9877	.1564	9° 00'
50	2.5826	.3872	.9325	.3611	10	50	6.1970	.1614	.9872	.1593	10
40	2.5605	.3906	.9315	.3638	20	40	6.0844	.1644	.9868	.1622	20
30	2.5386	.3939	.9304	.3665	30	30	5.9758	.1673	.9863	.1650	30
20	2.5172	.3973	.9293	.3692	40	20	5.8708	.1703	.9858	.1679	40
10	2.4960	.4006	.9283	.3719	50	10	5.7694	.1733	.9853	.1708	50
68° 00'	2.4751	.4040	.9272	.3746	22° 00'	80° 00'	5.6713	.1763	.9848	.1736	10° 00'
50	2.4545	.4074	.9261	.3773	10	50	5.5764	.1793	.9843	.1765	10
40	2.4342	.4108	.9250	.3800	20	40	5.4845	.1823	.9838	.1794	20
30	2.4142	.4142	.9239	.3827	30	30	5.3955	.1853	.9833	.1822	30
20	2.3945	.4176	.9228	.3854	40	20	5.3093	.1883	.9827	.1851	40
10	2.3750	.4210	.9216	.3881	50	10	5.2257	.1914	.9822	.1880	50
67° 00'	2.3559	.4245	.9205	.3907	23° 00'	79° 00'	5.1446	.1944	.9816	.1908	11° 00'
50	2.3369	.4279	.9194	.3934	10	50	5.0658	.1974	.9811	.1937	10
40	2.3183	.4314	.9182	.3961	20	40	4.9894	.2004	.9805	.1965	20
30	2.2998	.4348	.9171	.3987	30	30	4.9152	.2035	.9799	.1994	30
20 66° 10	2.2817	.4383	.9159	.4014	40	20 70° 10	4.8430	.2065	.9793	.2022	40
66° 10 g (angle°)	2.2637	.4417	.9147	.4041	50	78° 10	4.7729	.2095	.9787	.2051	50
o (Sunite)	tan ∂ value	$\cot \theta$ value	$\sin \theta$ value	$\cos \theta$ value		deg (angle°)	$tan \theta$ value	$\cot \theta$ value	$\sin \theta$ value	$\cos \theta$ value	
g (theta)	00'	66° 401 70°	deg (angle) =	11/L		θ (theta)	00'	=78° 10' ∼ 90°	don (anala) —	\\\\\	

t Ø value 10 value .3764 54° 00° .37680 50 .3680 50 .3597 40 .3514 30 .3432 20 .3351 10 .3270 53° 00° .3111 40 .3032 30 .2954 20 .2876 10 .2799 52° 00° .2793 50 .2647 40 .2572 30 .2447 20 .2443 51° 00° .2276 50 .2203 40 .22131 30 .2059 20 .1988 10 .1918 50° 00° .1847 50 .1778 40 .1504 40° 00° .1436 50 .1504 40° 00° .1436 50 .1369 40	00'	=36°00'~45°	n deg (angle)=	Whei	θ (theta)		50'	=24° 00' ~ 35°	n deg (angle) =	When	θ (theta)
.3764 54* 00' .3680 50 .3597 40 .3597 40 .3597 40 .3597 40 .3514 30 .3351 10 .3270 53* 00' .3110 40 .3032 30 .2954 20 .2876 10 .2799 52* 00' .2723 50 .2647 40 .2572 30 .24497 20 .2443 10 .2276 50 .2276 50 .2203 40 .1988 10 .1988 10 .1988 10 .1988 10 .1988 10 .1988 50* 00' .1847 50 .1778 40 .1847 50 .1436 50 .1369	cot θ value	tan θ value	$\cos \theta$ value	sin ∂ value	deg(angle°)		cot θ value	tan θ value	$\cos \theta$ value	sin θ value	deg(angle°)
3597	1.3764	.7265	.8090	.5878	36° 00'	66° 00'	2.2460	.4452	.9135	.4067	24° 00'
.3514 30 .3432 20 .3351 10 .3270 53° 00° .3190 50 .3111 40 .3032 30 .2876 10 .2799 52° 00° .2723 50 .2647 40 .2572 30 .2447 20 .2443 51° 00° .2276 50 .2203 40 .2131 30 .2059 20 .1988 10 .1778 40 .1778 40 .1571 10 .1504 40° 00° .1436 50 .1436 50 .1369 40 .1303 30 .1237 20 .1171 10 .1041 48° 00° .1170 40 .0913 30 .0850	1.3680	.7310	.8073	.5901	10	50	2.2286	.4487	.9124	.4094	10
.3432 20 .3351 10 .3270 53° 00' .33190 50° .3111 40 .3032 30 .2876 10 .2799 52° 00' .2723 50 .2647 40 .2572 30 .2497 20 .2423 10 .2276 50 .2276 50 .2278 20 .1311 30 .2059 20 .1988 10 .1918 50° 00' .1847 50 .1778 40 .1778 40 .1504 49° 00' .1436 50 .1369 40 .1303 30 .1237 20 .1171 10 .1106 48° 00' .1101 48° 00' .1041 50 .0913 </td <td>1.3597</td> <td>.7355</td> <td>.8056</td> <td>.5925</td> <td>20</td> <td>40</td> <td>2.2113</td> <td>.4522</td> <td>.9112</td> <td>.4120</td> <td>20</td>	1.3597	.7355	.8056	.5925	20	40	2.2113	.4522	.9112	.4120	20
.3351 10 .3270 53° 00' .3190 50 .3191 40 .3032 30 .2876 10 .2876 40 .2723 50 .2647 40 .2572 30 .2447 20 .2423 10 .2349 51° 00' .2276 50 .2203 40 .2131 30 .22059 20 .1988 10 .1918 50° 00' .1778 40 .1778 40 .1571 10 .1504 49° 00' .1436 50 .1369 40 .1303 30 .1237 20 .1171 10 .1041 50° .0977 40 .0913 30 .0850 20 .0786	1.3514	.7400	.8039	.5948	30	30	2.1943	.4557	.9100	.4147	30
.3270 53° 00' .3190 50 .3111 40 .3032 30 .2876 10 .2799 52° 00' .2723 50 .2647 40 .2572 30 .2497 20 .2429 50° .2243 10 .2349 51° 00' .2203 40 .2131 30 .2059 20 .1988 10 .1918 50° 00' .1847 50 .1778 40 .1571 10 .1554 49° 00' .1436 50 .1369 40 .1330 30 .1237 20 .1171 10 .1041 48° 00' .1041 50 .0977 40 .0913 30 .0850 20 .0786 <td>1.3432</td> <td>.7445</td> <td>.8021</td> <td>.5972</td> <td>40</td> <td>20</td> <td>2.1775</td> <td>.4592</td> <td>.9088</td> <td>.4173</td> <td>40</td>	1.3432	.7445	.8021	.5972	40	20	2.1775	.4592	.9088	.4173	40
3.190 50 3.111 40 30 30 30 30 2.954 20 2.876 10 2.799 52° 00' 2.723 50 2.647 40 2.572 30 2.2423 10 2.2423 51° 00' 2.276 2.203 40 2.2131 30 2.2131 30 2.2131 3.2059 2.0 1.988 10 1.918 50° 00' 1.847 50 0.756 40° 00' 1.436 50 1.1571 10 1.504 49° 00' 1.1436 30 1.237 2.0 1.171 10 1.106 48° 00' 1.041 50 0.977 40 0.913 30 0.850 20 0.786 10 0.724 47° 00' 1.0724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 00' 0.724 47° 0.724 0.724 47° 0.724 4.7° 0.72	1.3351	.7490	.8004	.5995	50	10	2.1609	.4628	.9075	.4200	50
.3111 40 .3032 30 .2954 20 .2876 10 .2799 52° 00' .2723 50 .2647 40 .2572 30 .24497 20 .22423 10 .2276 50 .2203 40 .2131 30 .2059 20 .1988 10 .1918 50° 00' .1847 50 .1778 40 .1708 30 .1640 20 .1571 10 .1436 50 .1369 40 .1303 30 .1237 20 .1171 10 .1041 48° 00' .1041 0977 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.3270	.7536	.7986	.6018	37° 00'	65° 00'	2.1445	.4663	.9063	.4226	25° 00'
3032 30 2954 20 2876 10 2799 52° 00' 2723 50 2423 10 22476 2276 2276 2276 2276 2276 2203 40 22131 30 2059 20 1988 10 1918 50° 00' 1640 49° 00' 1369 40 1369 40 1369 40 1303 30 1237 20 1171 10 1106 48° 00' 1041 500 724 47° 00' 40 0977 40 0913 30 0850 20 0786 10 07724 47° 00'	1.3190	.7581	.7969	.6041	10	50	2.1283	.4699	.9051	.4253	10
.2954 20 .2876 10 .2799 52° 00' .2799 52° 00' .2799 52° 00' .2723 50 .2647 40 .2572 30 .2497 20 .2433 10 .2276 50 .2203 40 .2131 30 .2059 20 .1988 10 .1918 50° 00' .1847 50 .1778 40 .1571 10 .1554 49° 00' .1436 50 .1369 40 .13303 30 .1237 20 .1171 10 .1041 50° .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.3111	.7627	.7951	.6065	20	40	2.1123	.4734	.9038	.4279	20
.2876 10 .2799 52° 00' .2723 50 .2647 40 .2572 30 .2497 20 .2423 10 .2276 50 .2203 40 .22131 30 .2059 20 .1988 10 .1918 50° 00' .1847 50 .1778 40 .1708 30 .1640 20 .1436 50 .1369 40 .13303 30 .1237 20 .1171 10 .1041 48° 00' .1041 50' .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.3032	.7673	.7934	.6088	30	30	2.0965	.4770	.9026	.4305	30
.2799 52° 00' .2723 50 .2647 40 .2572 30 .2497 20 .2243 10 .2276 50° .2203 40 .2131 30 .2059 20 .1988 10 .1918 50° 00' .1847 50 .1778 40 .1708 30 .1640 20 .1571 10 .1436 50 .1369 40 .1333 30 .1237 20 .1171 10 .1106 48° 00' .1106 48° 00' .1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.2954	.7720	.7916	.6111	40	20	2.0809	.4806	.9013	.4331	40
.2723 50 .2647 40 .2572 30 .22497 20 .2423 10 .2276 50 .2276 50 .2203 40 .2131 30 .2959 20 .1988 10 .1918 50° 00° .1847 50 .1778 40 .1640 20 .1571 10 .1504 49° 00° .1436 50 .1369 40 .1303 30 .1237 20 .1171 10 .1106 48° 00° .1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00°	1.2876	.7766	.7898	.6134	50	10	2.0655	.4841	.9001	.4358	50
2647	1.2799	.7813	.7880	.6157	38° 00'	64° 00'	2.0503	.4877	.8988	.4384	26° 00'
2572 30 2497 20 2493 10 2349 51° 00' 2276 50 2203 40 22131 30 2059 20 1988 10 1918 50° 00' 1847 50 1778 40 1708 30 1571 10 1504 49° 00' 1436 50 1303 30 1237 20 1171 10 1041 50° 10917 40 0913 30 0850 20 0786 10 0724 47° 00'	1.2723	.7860	.7862	.6180	10	50	2.0353	.4913	.8975	.4410	10
2497 20 2423 10 2349 51° 00' 2276 50° 00' 2203 40 2131 30 2059 20 11847 50 11778 40 1778 40 1778 40 17571 10 1363 30 1237 20 11706 48° 00' 11064 48° 00' 11064 48° 00' 11064 48° 00' 1041 10977 40 0913 30 0850 20 0786 10 0724 47° 00'		.7907	.7844	.6202	20	40	2.0204	.4950	.8962	.4436	20
2423 10 2349 51° 00′ 2276 50 2203 40 2131 30 2059 20 1988 10 1918 50° 00′ 1847 10 1504 49° 00′ 1369 40 1303 30 1237 20 1176 48° 00′ 1106 48° 00′ 1106 48° 00′ 1041 50 0977 40 0913 30 0850 20 0786 10 0724 47° 00′	1.2572	.7954	.7826	.6225	30	30	2.0057	.4986	.8949	.4462	30
.2349 51° 00' .2276 50 .2273 40 .2259 20 .1988 10 .1918 50° 00' .1847 50 .1778 40 .1778 40 .1778 40 .1504 49° 00' .1436 50 .1369 40 .1369 40 .1369 40 .1369 40 .1369 40 .1369 40 .1369 40 .1369 40 .1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.2497	.8002	.7808	.6248	40	20	1.9912	.5022	.8936	.4488	40
.2276 50 2203 40 2203 40 2131 30 22059 20 20 20 20 20 20 20 2	1.2423	.8050	.7790	.6271	50	10	1.9768	.5059	.8923	.4514	50
.2203	1.2349	.8098	.7771	.6293	39° 00'	63° 00'	1.9626	.5095	.8910	.4540	27° 00'
.2131 30 .2059 20 .1988 10 .1918 50* 00' .1847 .1640 .20 .1571 .1504 49* 00' .1436 .1369 40 .1369 40 .1303 .1237 .20 .1171 .10 .1064 .48* 00' .1041 .50 .0977 40 .0913 .30 .0850 .20 .0786 .10 .0724 47* 00'	1.2276	.8146	.7753	.6316	10	50	1.9486	.5132	.8897	.4566	10
2059 20 1988 10 1918 50° 00' 1847 50° 100' 1847 1778 40 1778 40 1504 49° 00' 1436 50° 1369 40 1369 40 1369 40 1369 40 1369 40 1369 40 1369 40 1303 30 1237 20 1171 10 1106 48° 00' 1041 50° 10977 40 0913 30 0850 20 00786 10 00724 47° 00'	1.2203	.8195	.7735	.6338	20	40	1.9347	.5169	.8884	.4592	20
.1988 10 .1918 50° 00' .1847 50 .1778 40 .1778 30 .1640 20 .1571 10 .1504 49° 00' .1436 50 .1303 30 .1237 20 .1171 10 .1106 48° 00' .1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.2131	.8243	.7716	.6361	30	30	1.9210	.5206	.8870	.4617	30
.1918 50° 00' .1847 50 .1778 40 .1778 40 .1778 .17	1.2059	.8292	.7698	.6383	40	20	1.9074	.5243	.8857	.4643	40
.1847 50 .1778 40 .1708 30 .1640 20 .1571 10 .1504 49° 00' .1436 50 .1303 30 .1237 20 .11106 48° 00' .1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.1988	.8342	.7679	.6406	50	10	1.8940	.5280	.8843	.4669	50
.1778	1.1918	.8391	.7660	.6428	40° 00'	62° 00'	1.8807	.5317	.8829	.4695	28° 00'
1708	1.1847	.8441	.7642	.6450	10	50	1.8676	.5354	.8816	.4720	10
.1640	1.1778	.8491	.7623	.6472	20	40	1.8546	.5392	.8802	.4746	20
.1571	1.1708	.8541	.7604	.6494	30	30	1.8418	.5430	.8788	.4772	30
.1504	1.1640	.8591	.7585	.6517	40	20	1.8291	.5467	.8774	.4797	40
.1436 50 .1369 40 .1303 30 .1237 20 .1171 10 .1106 48° 00' .1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.1571	.8642	.7566	.6539	50	10	1.8165	.5505	.8760	.4823	50
.1369 40 .1303 30 .1237 20 .1171 10 .11106 48° 00' .1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.1504	.8693	.7547	.6561	41° 00'	61° 00'	1.8040	.5543	.8746	.4848	29° 00'
.1303 30 .1237 20 .1171 10 .1106 48° 00' .1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.1436	.8744	.7528	.6583	10	50	1.7917	.5581	.8732	.4874	10
.1303 30 .1237 20 .1171 10 .1106 48° 00' .1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.1369	.8796	.7509	.6604	20	40	1.7796	.5619	.8718	.4899	20
.1237 20 .1171 10 .1106 48° 00' .1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.1303	.8847	.7490	.6626	30	30	1.7675	.5658	.8704	.4924	30
.1171 10 .1106 48° 00' 1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.1237	.8899	.7470	.6648	40	20	1.7556	.5696	.8689	.4950	40
.1106	1.1171	.8952	.7451	.6670	50	10	1.7437	.5735	.8675	.4975	50
.1041 50 .0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.1106	.9004	.7431	.6691	42° 00'	60° 00'	1.7321	.5774	.8660	.5000	30° 00'
.0977 40 .0913 30 .0850 20 .0786 10 .0724 47° 00'	1.1041	.9057	.7412	.6713	10	50	1.7205	.5812	.8646	.5025	10
.0913 30 .0850 20 .0786 10 .0724 47° 00'	1.0977	.9110	.7392	.6734	20	40	1.7090	.5851	.8631	.5050	20
.0850 20 .0786 10 .0724 47° 00'		.9163	.7373	.6756	30	30	1.6977	.5890	.8616	.5075	30
.0786 10 .0724 47° 00'		.9217	.7353	.6777	40	20	1.6864	.5930	.8601	.5100	40
.0724 47° 00'		.9271	.7333	.6799	50	10	1.6753	.5969	.8587	.5125	50
		.9325	.7314	.6820	43° 00'	59° 00'	1.6643	.6009	.8572	.5150	31° 00'
.0661 50	1.0661	.9380	.7294	.6841	10	50	1.6534	.6048	.8557	.5175	10
	1.0599	.9435	.7274	.6862	20	40	1.6426	.6088	.8542	.5200	20
	1.0538	.9490	.7254	.6884	30	30	1.6319	.6128	.8526	.5225	30
	1.0477	.9545	.7234	.6905	40	20	1.6212	.6168	.8511	.5250	40
	1.0416	.9601	.7214	.6926	50	10	1.6107	.6208	.8496	.5275	50
	1.0355	.9657	.7193	.6947	44° 00'	58° 00'	1.6003	.6249	.8480	.5299	32° 00'
	1.0295	.9713	.7173	.6967	10	50	1.5900	.6289	.8465	.5324	10
	1.0235	.9770	.7153	.6988	20	40	1.5798	.6330	.8450	.5348	20
	1.0176	.9827	.7133	.7009	30	30	1.5697	.6371	.8434	.5373	30
	1.0117	.9884	.7112	.7030	40	20	1.5597	.6412	.8418	.5398	40
	1.0058	.9942	.7092	.7050	50	10	1.5497	.6453	.8403	.5422	50
	1.0000	1.0000	.7071	.7071	45° 00'	57° 00'	1.5399	.6494	.8387	.5446	33° 00'
	$\tan \theta$ value	$\cot \theta$ value	$\sin \theta$ value	$\cos \theta$ value		50	1.5301	.6536	.8371	.5471	10
θ (theta)		45° 00' ~ 54°				40	1.5204	.6577	.8355	.5495	20
v (mota)	UU	TO UU ~ U4	uog (allyle) —	WIIEII		30	1.5108	.6619	.8339	.5519	30
conversion chart	the conver	n value from	trical functio	e triannama	Finding th	20	1.5013	.6661	.8323	.5544	40
vonversion that	and contacts	ıı vatuc IIVIII	urvar rullvill	io iriguilullit	inumy th	10	1.4919	.6703	.8307	.5568	50
		r	$00'\sim45^{\circ}~00$	angle) is 0°	When dea (a	56° 00'	1.4826	.6745	.8290	.5592	34° 00'
$\sin 5^{\circ} = 0.0872$	ex.) sin 5°				① Select the	50	1.4733	.6787	.8274	.5616	10
$cos5^{\circ} = 0.9962$			the deg (angle			40	1.4641	.6830	.8258	.5640	20
			nometrical function			30	1.4550	.6873	.8241	.5664	30
$tan 5^{\circ} = 0.0875$			ion chart, determi			20	1.4460	.6916	.8225	.5688	40
$\cot 5^{\circ} = 11.430$	COT 5			he target deg (an		10	1.4370	.6959	.8208	.5712	50
		_	-			55° 00'	1.4281	.7002	.8192	.5736	35° 00'
		0'	$00'\sim 90^{\circ} 0$	ingle) is 45°	When deg (a	50	1.4261	.7002	.8175	.5760	35 00 10
$\sin 85^{\circ} = 0.9962$	ex.) sin 85°	he	e right side of t	e column on the	1) Select the	40	1.4193	.7046	.8158	.5783	20
$\cos 85^{\circ} = 0.0872$).	he deg (angle°	chart and find	conversion	30	1.4019	.7089	.8141	.5807	30
$\tan 85^{\circ} = 11.430$		on	nometrical function								40
$\cot 85^{\circ} = 0.0875$				ottom of the con		20 54° 10	1.3934	.7177	.8124	.5831	
00100 -0.0075	601 03		et deg (angle°).	e value of the targ	determine the	54° 10	1.3848	.7221	.8107	.5854	50
						deg(angle°)	$tan \theta value$	$\cot \theta$ value	$\sin \theta$ value	$\cos \theta$ value	
es (°) and minutes ('). gree=60 minutes)	/0\		Annual Control of the Control		♠ irit + / · ·	θ (theta)	00'	E4° 401 000	deg (angle) =		

Nse
Structural
Machine
Steels for
d Alloy
Steels ar
arbon

100 100	A35 — 561	Name JIS G 4102 Nickel chromium steels JIS G 4103 Nickel chromium steels JIS G 4104 Chromium steels	2002	683/1,10,115) 683/1,10,115) 683/1,10,115) 6.15NICr13 6.15NICrNo.2 20NICrMo.2 410rNIMO.2 410rNIMO.2 6.10.7 6	8615 8615 8617 8620 8620 8620 8620 8640 8640 8640 8640 8640 8640 8640 864	970 BS EN 1003 – 1,2 BS EN 1003 – 1,2 — — — — — — — — — — — — — — — — — — —	DIN EN 10083—1,5	970 Part 1.3 DIN EN 10084 NF A35—551 RE EN 10083—1,2 NF EN 100	4543 40XH - 30XH3A
S10C C10 1010				ISNIC13	8615 8617 8622 8622 8637 8637 8637 8640 1 4340	655M13 655M13 805A20 805M20 805A22 805M22		1 1 1	40XH 30XH3A
STOC CTO Other Other				15NICr13 15NICr13 20NICrMo2 20NICrMo2 41CrNIMO2 41CrNIMO2	8815 8817 8817 8820 8820 8820 8824 8440 4340 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	655M13 655M13 805A20 805M20 805A22 805M22	15NiCr13	1 1	30XH3A
S12C				15NICr13 20NICrM02 20NICrM052 20NICrM052 41CrNIM052 41	8615 8615 8617 8620 8620 8620 8630 4320 4320 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	655M13 805A20 805A20 805A22 805M22	15NiCr13		
Sife				200/C/M 0.2 20N/C/M 0.52 41C/N/IM 0.52 41C/N/IM 0.52 	8815 8815 8820 8820 8822 8837 8640 1 4320 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	805A20 805M20 805M20 805M22		1	ı
C15M/Z				20NICrM052 20NICrM052 41CrNIM052 41CrNIM052 ————————————————————————————————————	8617 8627 8628 8637 8637 1430 1430 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	805A20 805M20 805A22 805M22	1	I	
- 1020 C22 C22E - 1028				200Cr4 3C0Cr54 3G0Cr54 3G0Cr54 3G0Cr54 3G0Cr54 3G0Cr54 3G0Cr55	8632 8632 8637 8640 4320 4340 	805M22	20NiCrMo2	20NCD2	ı
C25 C25E C25E C25E C25E C25E C25E C25E C				20074 20074 30074 30074	4320 4340			1	1
C25 C25M2 C25M2 C25M2 C30 C30 C30 C30 C30 C30 C30 C30					4340	1 1	1 1	1 1	
C2564 1025 C256 C256 C256 C256 C256 C256 C256 C2				20074 200054 34074	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	I	1	ı
C30						1 1	1 1	1 1	1 1
C30 C30E4 C30E4 C30E7 C3						ı	1	1	ı
C300 C300RE4 C300N2 C300R2 C300R2 C300R2 C300R C300R C300R C300 C300 C300 C300R C400R C400					1	ı	ı	1	1
C30M2 C30				20Cr4 20Cr54 34Cr4	1 1	ı	I	ı	ı
C35	35			200r4 200rS4 340r4	E120	1 1	17Cr3	1 1	15X
C35 C35E C35E4 C35E7 C35E C35E C35E C35E C35E C35E C35E C35E	35		t	34Cr4	0.210	ı		ı	20X
C35M2 C35R C35R C35R C35R C40 C40 C40 C40 C40 C40R C40R C40R C40			SCr430	34CrS4	5130 5132	34Cr4 34CrS4	34Cr4 34CrS4	34Cr4 34CrS4	30X
C40 C40 C40 C40 C40 C40E4 C40E4 C40E4 C40E C40E				34Cr4 34CrS4		970.4	37Cr4	37.0r4	
C40 1039 C40	- 35 L		SCr435	37Cr4	5132	37CrS4	37CrS4	37CrS4	35X
- 1042 080442	C40 C40E 40 F C40R		SCr440	37Cr4 37Cr54 41Cr4	5140	530M40 41Cr4	41Cr4 41CrS4	41Cr4 41CrS4	40X
C45	- 40 L		SCr445	41CrS4	ı	5	ı	ı	45X
C45E4 1045 C45E C45E C45E C45E C45R C45R C45R C45R C45R C45R C45R C45R		110 G A10E	SCM415	_	1	-	1	-	-
C50 C50 C50 C50 C50	5E 45 L		SCM418	18CrMo4 18CrMoS4	ı	ı	18CrMo4 18CrMoS4	I	20XM
C50 U8UM3U C50	- 45 L	molybdenum	SCM420	ı	ı	708M20	I	ı	20XM
C50M2 C50M2 C50E C50R	C50 C50E 50 F C50R		SCM430	1 1	4131	1 1	1 1	1 1	30XM 30XMA
1050	- 50 F			34CrMo4 34CrMoS4	4137	34CrMo4 34CrMoS4	34CrMo4 34CrMoS4	34CrMo4 34CrMoS4	35XM
070M55 C55 C55 C55E C55E C55E	C55 C55E —		SCM440	42CrMo4 42CrMoS4	4140 4142	708M40 709M40 42CrMo4 42CrMoS4	42CrMo4 42CrMoS4	42CrMo4 42CrMoS4	I
090	C60 C60E C60B		SCM445	1	4145	1	1 1	1 1	1 1
— 045M10 C10E	XC10 —	DIN: Deutsches Institut für Nörmung EN: European Standards	itut für Nörmul arde	bu					
C15E	XC12 —	NF: Norme Francaise	200						

ISO: International Organization for Standardization AISI: American Iron and Steel Institute SAE: Society of Automotive Engineers BS: British Standards

1135

Janan Industrial Standards	Standards		0.	teel tynes in	Steel tynes in foreign standards	rds		Janan Industrial Standards
Standard No.	Symbol	1 S 0 683/1,10,11 ⁵	AISI	970 Part1,3 BS EN 10083—1,2	970 Part., 3 970 Part., 3 98 EN 10083—1,2 BS EN 10083—	NF EN 10083—1,2	□ 0 C T 4543	Standard No. Symbol 683/
IIS G A106	SMn420	22Mn6	1522	150M19	1	1	1	SNB5
Manganese	SMn433	ı	1534	150M36	I	ı	30 F 2 35 F 2	Alloy steel bolting SNB7 42C
steels and manganese	SMn438	36Mn6	1541	150M36	ı	1	35 F 2 40 F 2	_
coromium steels for machine	SMn443	42Mn6	1541	ı	1	1	40 F 2 45 F 2	
structural use	SMnC420	ı	1	1	1	1	1	
JIS G 4202	SMnC443	ı	I	1	ı	_	I	bolting materials SNB23—1 ~ 5 SNB24—1 ~ 5
<u>s</u>	SACM645	41CrAIMo74	I	I	I	ı	I	Notes 1) BS EN 10259 2) DIN 1654 Part 4
110 0 4053	SMn420H	22Mn6	1522H	ı	1	1	I	4) NE EN 10260
	SMn433H	1	1	1	-	_	1	4) NF EN 10239
Structural steels	SMn438H	36Mn6	1541H	1	-	_	1	3) ISO063—1, 10, and 11 nave
With specified	SMn443H	42Mn6	1541H	I	1		I	
hands	SMnC420H	I	I	1	1	1	1	
200	SMnC443H	I	I	I	17Cr3	I	I	
	SCr415H	I	I	I	17CrS3	ı	15X	Tool steel name
	SCr420H	200r4 200rS4	5120H	1	1	1	20X	Rolled steel for general st
	SCr430H	34Cr4 34CrS4	5130H 5132H	34Cr4 34CrS4	34Cr4 34CrS4	34Cr4 34CrS4	30X	Carbon steel for mechanical
	SCr435H	340r4 340rS4 370r4 370rS4	5135H	37Cr4 37CrS4	37Cr4 37CrS4	37Cr4 37CrS4	35X	Chrome molybdenui Nickel chrome molybden Carbon tool steel
	SCr440H	370r4 370r84 410r4 410r84	5140H	41 Cr4 41 CrS4	41Cr4 41CrS4	41Cr4 41CrS4	40X	Alloy tool steel Alloy tool steel
	SCM415H	1	ı	1	ı	1	1	High—speed fool st
	SCM418H	18CrMo4 18CrMoS4	ı	ı	18CrMo4 18CrMoS4	1	ı	High carbon chrome bearing
	SCM420H	1	ı	708H20	1	1	I	Stainless steel
	SCM435H	34CrMo4 34CrMoS4	4135H 4137H	34CrMo4 34CrMoS4	34CrMo4 34CrMoS4	34CrMo4 34CrMoS4	ı	Gray cast iron
	SCM440H	42CrMo4 42CrMoS4	4140H 4142H	42CrMo4 42CrMoS4	42CrMo4 42CrMoS4	42CrMo4 42CrMoS4	I	
	SCM445H	ı	4145H 4147H	_	1	_	I	
	SCM822H	ı	ı	ı	1	1	I	
	SNC415H	I	ı	I	I	1	I	
	SNC631H	1	ı	1	1	I	ı	
	SNC815H	15NiCr13	- OC 17 II	655H13	15NiCr13	ı	ı	
	SNCM220H	20NiCrMo2 20NiCrMoS2	8620H 8622H 8622H	805H20 805H22 805H22	ı	20NCD2	ı	
	SNCM420H	I	4320H	1	I	1	I	

Japan Industrial Standards	al Standards		S	teel types in	Steel types in foreign standards	rds	
Standard No. Name	Symbol	1 S 0 683/1,10,11 ⁵⁾	AISI SAE	BS 970 Part1,3 BS EN 10083—1,2	BS Part1,3 BS EN 10083—1,2 DIN EN 10083—1,2 NF EN 10083—1,2	NF A35—551 NF EN 10083—1,2	□ 0 C T 4543
	SNB5	1	501	1	ı	1	ı
Alloy steel bolting materials for high	SNB7	42CrMo4 42CrMoS4	4140 4142 4145	708 40 709M40 42CrMo4 ¹⁾	42CrMo4 ²⁾	42CrMo4 ⁴⁾	I
temperature service	SNB16	1	1	40CrMoV4-61)	40CrMoV47 ³⁾	40CrMoV4-64)	ı
JIS G 4108	SNB21-1 ~ 5	1	1	40CrMoV4-61)	40CrMoV47 ³⁾	40CrMoV4-64)	ı
Alloy steel bars for SNB22—1 ~ 5	$\rm SNB22{-}1\sim 5$	42CrMo4 42CrMoS4	4142H	-	42CrMo4 ²⁾	1	1
bolting materials	SNB23 $-1 \sim 5$	_	E4340H	1	1	1	I
	SNB24 $-1 \sim 5$	_	4340	1	1	1	I
Notes 1) BS EN 10259 2) DIN 1654 Part 4	10259 554 Part 4						
3) DIN 17240 4) NF EN 10259	10259						
5) 1S0683	1, 10, and 1	1 have been transk	ated into JIS	as JIS G 7501,	5) ISO683—1,10, and 11 have been translated into JIS as JIS G 7501, G 7502, and G 7503.	e,	
To	Tool steel name	ne					
Rol	lled steel for ge	eneral structures S	SS400	Steel, Si	Rolled steel for general structures SS400 <u>Steel, Structure, 400 N/mm²</u>	mm²	

Tool steel name	
Rolled steel for general structures SS400	SS400 Steel, Structure, 400 N/mm²
Carbon steel for mechanical structures S45C	S45C <u>S</u> teel, <u>0</u> .45% <u>C</u>
Chrome molybdenum steel	Chrome molybdenum steel SCM435 $\overline{\mathrm{S}}$ teel, $\overline{\mathrm{Cr}}$, $\overline{\mathrm{Mo}}$ $\overline{\mathrm{4}}$ 35
Nickel chrome molybdenum steel	SNCM220 Steel, Ni, Cr, Mo, 220
Carbon tool steel	SK105 Steel, Tool, 105
	(formerly SK3)
Alloy tool steel	SKS3 Steel, Tool, Special, Type 3
Alloy tool steel	SKD11 <u>Steel, Tool, Dies, Type 11</u>
High—speed tool steel	SKH51 Steel, Tool, High Speed, Type 51
High carbon chrome bearing steel	SUJ2 Steel, Use, Bearing, Type 2
Stainless steel	SUS304 <u>S</u> teel, <u>U</u> se, <u>Stainles</u> s, Type 304
Gray cast iron	FC250 <u>F</u> errum (Iron), <u>C</u> ast, 250 N/mm²

COMPARISON OF MATERIAL JIS AND RELATED OVERSEAS STANDARDS (2)

I.	S Inte	emational andards			For	Foreign standa	ıdards		Europe standard	ndard	SIF	International standards			Forei	Foreign standards	ırds		Europe standard	andard
Standard No /name		30 TR	IISA	Ä	¥	Germany	France	Rissia former USSR	H		Standard No./name	ISO TR	HSH	٨	IIK	Germany	France	Rissia former USSR	H	
(stainless steel code)	SE T	15510 L·No.	NIS	AISI	-	DIN		L OCT	Type	No.	(stainless steel code)	15510 L·No.	NNS	AISI		DIN		LOCT	Type	No.
JIS G 4303∼		12	S20100	201			Z12CMN17-07Az		X12CrMnNiN17-7-5	1.4372	SUS 405	40	S40500	405 40	405S17 X6	X6CrAI13	Z8CA12		X6CrAI13	1.4002
4305	SUS 202		820200	202	284S16			12X17 F 9AH4	-5-	1.4373	SUS 410L		000000	00			23C14			
p	SUS 301	2	830100	301	_	X12CrNi177	Z11CN17-08	07X16H6	_	1.4319	SUS 429	41	243000		430S17 XF		78017	19X17	X6Cr17	1 4016
	SUS 301L	4				X2CrNiN18—7			X2CrNiN18—7	1.4318	SUS 430F	45	S43020 ⁴	430F			Z8CF17		X6CrMoS17	1.4105
	SUS 301.11		00000	0	10000	X12CrNi177	24,000140	0.00			SUS 430LX	4	S43035		*	X6CrTi17	Z4CT17		X3CrTi17	1.4510
JIS G 4308~	SUS 30Z		230200	302	302525		80—81ND217	1271819			SHS 430111				×		Z4CN154.7		XZCrIII / X3CrNh17	1.4520
	9709 9070	Ç	000000	3020	10000	0.000,000,000	2008174.0		_	1000	SUS 434	43			434S17 X6	X6CrMo17 1	Z8CD17 —01		X6CrMo17—1	1.4113
Wires and rods	505 303	2	230300	303		A I UCINISTS 9	28UNF18—09	107107	ASCENIS IS —8	1.4305	SUS 436L		S43600 ⁴	436					X1CrMoTi16-1	1.4513
	900 900 900		220020	30306	140000			12A 10H 10E			SUS 436J1L									
	202 2020		00,000							, ,	SUS 444	46	244400	444		_	Z3CD118—02		XZCrMoII18-Z	1.4521
JIS G 4313~	SUS 304		230400	304	304531	VSCRN118 10	60-81ND/7	U8X18H1U	_	1.4301	505 44501									
4315	SUS 304L	-	S30403	304L	304S11	X2CrNi19 11	Z3CN19-11	03X18H11	X2CrNi19-11	1.4307	SUS 445UZ		044700							
		2								1.4307	303 44/31		24,60				740000			
String and wires for	S11S 304N1	10	\$30451	304N			76CN19-09A7		X2CrNi18—9	1 4306	5US AM2/		770440	9		_	10050017			
	CIIC 304M2		C204E9						_		5US 403		340300				0,00		0.5	7
pilligs, wiles for	000 004 M	c	20000	N I V		VOC-RIBING 40	700M140 40A-		VOC. MINITO	4 404 4	000 410	5 ç	041000	410	410021 A	20012	20013	00010	X120113	4000
20	NI SOLO SOLO		2004000	304EIV		OL OLIMINIO SV	7401 _ 01NIOC7		_	1-24	CIIC 410E2		200						211000	
JIS G 431/~	202 30431										SHS 41011		C/11/05							
4320	SUS 304JZ										SIIS 416				603		741 CE13		Y190rc13	1 4005
Hot rolled equal leg angles.	SUS 304J3		S30431	S30431							014 000	9 6			450020				X200712	200
	SIIS 305	00	230500	305	305519	305S19 X5CrNi18 12	78CN18—12 06X18H11		X4CrNi18—12	1 4303	1003 42001 0110 42010					X20013		20X13	X20Cr13	1.402
o rojoso	000 000 0110 30E 14		2000	2		7	2		_	000	303 42002 SIIS 4200E		045000	750 400F			730CE13		X20C1 13	1.4020
Julianumera noi norginga,			0000	0000			0.000				SHS 420F2			5		_			75301013	201
cold —tormed sections			230908	3095			Z100NZ4-13				SIIS 429 I1									
		X6CrNi25—21	S31008	310S	310831		Z8CN25-20 10X23H18	10X23H18	X6CrNi25-20		1000	12			404 000 00	V0000-M147.0		0074700	V4 OC -NI:4 7 0	4 4057
	SUS 315J1										000 431 0110 4404			2 (0)			770C15		V70CrMo15	1 1100
	SUS 315.J2										SUS 440B			140B					2100000	-
		26	S31600	316	316531	X5CrNIMo17 12 2	ZZCND17-12-02		X4CrNiMo17—12—2	1.4401	SUS 440C		S44004	400			Z100CD17	95X18	X105CrMo17	1.4125
		27				X5CrNIMo17 13.3	Z6CND18-12-03		X4CrNiMo17-13-3	1,4436	SUS 440F		844020	S44020						
		19	\$31603	3161	316511	X2CrNIMo17 13.2	73CND17-12-02			1 4404	SUS 630	28	S17400	217400			Z6CNU17-04		X5CrNiCuNb16-4	1.4542
		2 2	3			X2CrNIMo17 14.3	73CND17-13-03 03X17H14M3	03X17H14M3		1 4432	SUS 631		817700	217700	<u>×</u>	K7CrNiA17 7		09X17H7 IO	X7CrNiAl17—7	
		3								1 4435	SUS 63231			50	10/10			AEV4AU4ADOM		
	11000110		10000	1000						202	L L	VESPARARSH A		3 8	341042		230CMVS 14 — 14	42X 14H 14B2W		
	Not suc		231651	STON							4315 SUIT 33	_		3	2006		SOCUMENT TO SHE			
	SUS 316LN		S31653	316LN		X2CrNIMoN17 12 2	Z3CND17 —11Az			1.4406		ý.	000000	6		VE2 C-MoMitor 0	755 CMM94 00A7	EEV20 LOAUA		
		23				X2CrNIMoN17 13 3	Z3CND17-12Az			1.4429			S63017	5 8	381534		7000	100000		
	SUS 316Ti	28	S31635			X6CrMMoTi17 12 2	Z6CNDT17-12	08X17H13M2T	X6CrNiMoTi17-12-2	1.4571	sheets SUH 38									
	SUS 316J1										SUH 309		230900	309	309S24		Z15CN24-13			
	SUS 316J1L										SUH 310		000155	000		Crniz520	Z15UNZ5—20	ZONZHCZYNZ		
	508 317		231/00	31/	31/516						099 HIIS		S66286	0000			76NCTV25-20			
	SUS 317L	21		317L		X2CrNIMo18 16 4	Z3CND19-15-04			1.4438	SUH 661		R30155							
	SUS 317LN	24	S31753				Z3CND1914Az		X2CrNiMoN18-12-4	1.4434	SUH 21				ت					
	SUS 317.J1								X2CrNiMoN17-13-5	1.4439	SUH 409	37	S40900 ⁷	409 40	409S19 X6	X6CrTi12	Z6CT12			
	SUS 317.J2										SUH 409L	38					Z3CT12		X2CrTi12	1.4512
	SUS 317 J3L										SUH 446	X150rN26(2)	S44600	446			712025	15X28		
	SUS 836L		N08367									V4301318 - 2-2		₹	* C+0.10+	74301318 S	24000040	MOOD 1		
	_	31	N08904	N08904			Z2NCDU25-20		r	1.4539	SUH 4			4	443S65		Z80CSN20—02	10001001		
	_	15	832100	321		X6CrNiTi18 10	Z6CNT18-10		X6CrNiTi18 10	1.4541	SUH 11	X500rSi18-2(2)						40X 9C2		
	_	17	S34700	347	347S31	X6CrNiNb18 10	Z6CNNb18-10	08X18H12E	X6CrNiNb1810	1.4550	009 HNS		0000					20X12BHM 5¢r		
	SUS 384	6	S38400	384			Z6CN18-16						242200							
	SUS XM7 D	D26(1)	S30430	304Cu	394S17		Z2CNU18-10		X3CrNiCu18-9-4	1.4587	Notes: 1. ISO: ISO TR 15510: 1997. Symbols are the same as EN. (1) ISO 4954, (2) ISO 683—15.	: 1997. Sym	bols are th	e same as	EN. (1)	ISO 4954, (2) ISO 683—	15.		
	SUS XM15J1		S38100				Z15CNS20-12		X1CrNiSi18-15-4	1.4381	US: UNS registration numbers and the AISI Steel Manual	on numbers	and the AIS	SI Steel Ma	annal					
	SUS 329.11		\$32900	329							Europe standard: EN10088—1:1995.	N10088-1	1995.							
	SUS 329J3L	33	S39240	S31803			Z3CN DU22 — 05Az 08X21 H6M2T			1.4462	4. European countries: BS, DIN, NF, others. These national standards are to be abolished in favor of EN	BS, DIN, N	F, others.	These nati	onal stan	dards are to	be abolished	in favor of EN.		
	SUS 329.14L	34	S39275	S31260			Z3CNDU25-07Az		X2CrNiMoCuN25-6-3	1.4507	5. OCT: 5632.									
		1		١																

Osi		AISI	Steel types in to	foreign standards DIN	ds HN	LUCT	Standard No (name	JIS Svmhol	USI	AISI	teel types in f	Steel types in foreign standards	S	TOCL
TC140	9	ASTM —	2	VDEh —	C140E3U	713	IIS G 4404		30CrMoV3	ASTM H10	BH10	VDEh X32CrMoV33	32CrMoV12—18	3 1
TC120		W1-111/2	I	I	C120E3U	Y12	(Continued)	SKD 8	Ι	H19	BH19	1	1	I
TC105		W1-10	1	C105W1	C105E2U	Y11		SKT 3	I	I	1	-	55CrNiMoV4	Ι
2	Н	W1- 9	ı	I	C 90E2U	Y10		SKT 4	55NiCrMoV2	1	BH224/5	55NiCrMoV6	55NiCrMoV7	5XHM
TC 90		W1- 8	I	C 80W1	C 90E2U C 80E2U	78 Γ 79	Special Purpose Steels	ose Steels						
25 5	80	ı	I	C 80W1	C 80E2U	У8	7	SIC			eel types in fo	Steel types in foreign standards		
اع	2	I	I	C 70W2	C 70E2U	77	Standard No./name	Symbol	180	SAE	BS	NIQ	¥	L 0CT
HS18-0-1	0-1	1 1	BT 1	1	王	P18	JIS G 4801	o IIIo	ı	1075	1	ı		75 00
HS18-1-1-5	-1-2	T 4	BT 4	S18-1-2-5	HS18-1-1-5	1	Spring steels	-		1078				82 00
HS18-0-1-10	1-10	T 5	BT 5			I		_	59Si7	I	I	I	60Si7	60C2
HS12-1-5-5	-2-2	T15	BT15	S12-1-4-5		I		SUP 7	59Si7	9260	I	I	60Si7	60C2r
HS 6-5-2	5—2	M2	BM 2	S 6—5—2	HS 6-5-2	I		SUP 9	55Cr3	5155	I	55Cr3	55Cr3	I
I		M3-1	I		I	I		SUP 9A	I	5160	I	I	60Cr3	ı
4S 6—5—3	5—3	M3-2	I	S 6—5—3	HS 6-5-3	I		SUP10	51CrV4	6150	735A51,735H51	50CrV4	51CrV4	X φ Α50ΧΓ φ Α
I		M4	BM 4	I		I		SUP11A	60CrB3	51B60	Ι	I	I	50XrP
HS 6-5-2-5	-2-2	I	BM35	S 6-5-2-5	HS 6-5-2-5HC	P6M5K5		SUP12	55SiCr63	9254	685A57,685H57	54SiCr6	54SiCr6	I
I		M36	I	I		I		SUP13	60CrMo33	4161	705A60,705H60	I	60CrMo4	I
HS10-4-3-10	-3-10	I	BT42	S10-4-3-10		Ι	JIS G 4804	SUM11	Ι	1110	Ι	Ι	Ι	I
HS 2-9-2	9-2	M7	1	1 :		1	Free cutting	SUM12	ı	1108	I	1	1	I
HS 2-9-1-8	8-1-8	M42	BM42	S 2-10-1-8	HS 2-9-1-8		carbon	SUM21	9 820	1212	- (2000)	-	1 0	I
105WCr1	7.	21	1 1	105WCr6	105WCr5	AB4 VR F	steels	SUMIZZ	11SMINZ8	1213	(230INIU/) —	9 SIMILZ8	525U C250Dh	
202	- 5	ı	ı	00000		I V		SIIM23	SIMIIIF DZ0	1915	ı	9 SIVILIF D20	023010	ı
1		1	I	ı	I	I		SIIM23	I	2	I	I	I	I
1		9	1	1	1	1		SUM24	11SMnPh28	12114	I	9 SMnPh28	S250Pb	I
		3 1	1	ı	1	1		SUM25	12SMn35	1	I	9 SMn36	\$300	I
1		I	I	I	C140E3UCr4	13X		SUM31	ı	1117	I	15S10	1	ı
1		ı	1	1	1	1		SUM31L	I	1	I	1	ı	I
I		ı	ı	ı	I	I		SUM32	I	I	210M15,210A15	I	(13MF4)	ı
TCV105		W2-91/2	BW2	I	100V2	I		SUM41	I	1137	1	ı	(35MF6)	I
1		W2-8	1	1	l	1		SUM42	I	1141	1	1	(45MF6.1)	1
Ι		_	_	Ι	1	9XB Γ		SUM43	44SMn28	1144	(226M44)	_	(45MF6.3)	Ι
105WCr1	Ę,	I	I	105WCr6	105WCr5	XBГ	JIS G 4805		Ι	51100	Ι	Ι	I	I
_		_	_	_	-	_	High carbon	SUJ 2	B1 or 100Cr6	52100	_	100Cr6	100Cr6	ЩХ15
1		ı	I	I	I	I	chromium	61113	R) or 1000 rMn Sid—d	ASTM A 485	ı	I	ı	I
		-	1		1	-	bearing		bz ui i uuoimii oli+ +	Grade 1				
2100r12	r12	D3	BD3	X210Cr12	X200Cr12	X12	steels		I	I	1	I	1	I
1		D2	BD2		X160CrMoV12	I		SUJ 5	_	_	-	_	_	Ι
100CrMoV5	7oV5	A2	BA2	I	X100CrMoV5	I								
30WCrV5	rV5	1	1	I	X32WCrV3	1								
30WCrV9	rV9	H21	BH21		X30WCrV9	Ι								
1		Ħ H	BH11		X38CrMoV5	4X5M C								
40CrMoV5	10/5	H13	BH13	X40CrMoV51	X40CrMoV5	4X5M 1C								
				t										

COMPARISON OF DIE STEEL BY MANUFACTURERS

■COMPARISON OF DIE STEEL BY MANUFACTURERS

Tvne		Symbols in fo	Symbols in foreign standards		Hitachi Metale	Hitachi Metale Aichi Steel	Kohe Steel	Sanvo Snerial Steel	Daido Steel	Kobe Steel Sanu Saevia Steel Daido Steel Nippon Koshuha Nachi-Fujikoshi Biken Seiko	Nachi-Fujikoshi	Biken Seiko	Uddeholm	Bohler
a di		AISI	DIN	ISO	III tagiii Metala	Altill Office	NODE OFFICE	oanyo openiai oteei	Daino oteei	Steel Group	Corp	IIINGII OGINO	(Sweden)	German
Carbon tool steels	SK105 (formerly SK3)	W1-10		TC105	YC3	SK3		QK3	YK3	K3				K990
	SKS93				YCS3	SK301		QKSM	YK30	K3M	SK3M			
	SKS3				SGT	SKS3		QKS3	G0A	KS3	SKS3	RS3	ARNE	K460
	SKD1	D3		X210Cr12	CRD	SKD1		acı	DC1	KD1			SVERKER3	K100
	SKD11	D2	X210Cr12	X210Cr12W12	SLD	SKD11		QC11	DC11	KD11	CDS11	RD11	SVERKER21	X105
	SKD11 (modified)				SLD8 SI D10	AUD15		QCM8	DC53	KD11S KD21	WDS9		SLEIPNER	K340
	Matrix group CrSKD				ARK1	SXACE		QCM7	DCX					
	SKD12			X100CrMoV5	SCD	SKD12			DC12	KD12			RIGOR	K305
Alloy tool	Pre-hardened 40 HRC	A2			HPM2T				G040F	KAP65			IMPAX	
cteel	Pre-hardened 50 HRC or more				PRE2				CX1	RC55				
	Flame-hardened steel				HMD5 HMD1	SX105V SX4		QF3	605	FH5			FERNO	
	Low temperature air-coded steel				ACD37	AKS3			604	KSM				
	Impact resistant steel				YSM	AKS4		QF1	GS5	KTV5	SRS6		PREGA COMPAX	K630
	Others				ACD8	AUD11 SX5 SX44					ICS22 MCR1		CALMAX VIKING ELMAX VANADIS4 VANADIS6 VANADIS10	K190
	SKH51	M2	H6.5.2	HS6-5-2	YXM1			QH51	MH51	H51	SKH9	RHM1		Se00
	SKH55 group		\$6.2.5	HS6-5-2-5	YXM4				MH55	HM35	HM35 HS53M	RHM5		S705
High-speed	SKH57 group		S10-4-3-10	HS10-4-3-10	XVC5				MH8	MV10	HS93R HS98M FM38V	RHM7		S700
990	Matrix group				YXR33 YXR3 YXR7			QHZ	MH85 MH88	KXM KMX2 KMX3	MDS1 MDS3 MDS7 MATRIX2 ATM3			
	SKH40			HS6-5-3-8	HAP40		KHA30		DEX40		FAX38		ASP30	S590
	Matrix group				HAP5R		KHA3VN		DEX—M1 DEX—M3					
					HAP10									Se90
Downlared					HADEO		KHA32	SPM23	DEX21		FAX31		ASP23	S790
h-sneed									DEX61		FAX55			0000
tool steel	Others				HAP72		KHA60	SPM60	DEX80		FAXG1		ASP60	
							KHA77				FAX18			
							KHA20NI				FAXGZ			
							KHA33N							
							KHA3NH							
							KHASNH							

HARDNESS OF PRIMARY STEEL MATERIALS AND THE CORRESPONDING TOOLS

Perce Perc											Machin	Machined material				
Feujment name required material materia							Non-fer met	rous	Untreate	9	Heat tre	ated	Hari	dened/ter	npered	
Tool website and before a purpose milling cutter (chings one and control of chings of	Machining	Fairing	Tools	T001	Parts materi				AI—alloy) 3400 (SS41) S45C S50C		SCM43	(Be—Cu) 5 HPM2T	8450			Carbide)
Machining cutter Colinis Colin	method		required	material	T00I				4VAX ESR		HPM7 PX5 HPM38	NAK55 HPM1 NAK80 HPM50	(Electroforming-or ORAVAR (Age-hardened	utside) (SUPREM I) MAS1C	Electroform, E	ing-inside)
Machining cutter Drills High-speed steel SkH- Reamers Carbide Win-Co Machining cutter Drills High-speed steel SkH- Machining cutter Drills High-speed steel SkH- Machining cutter Drills High-speed steel SkH- Machining cutter Drills Boring machine Reamers Drills Boring machine Reamers Drills Boring machine Reamers Migh-speed steel SkH- Migh-speed steel Migh-speed steel SkH- Migh-speed stee					material			BIG 10	OR (SKD1	2 group)	STAVAX ESR 30	DH2F 40			8	D12 group)
Machining center Reamers Pulls Reamers Pulls Reamers Pulls Reamers R		_	-	Drills		SKH-			+							
Machining center Outling trools Taps			Reamers End mills	Reamers	Carbide	Wn—Co										
Profiting machine Drillis Profiting bonds and the second process latter Carbide Wind-Co Carbide Carbid			Cutting tools			SKH-										
Boring machine Reamers Boring machine Reamers High-speed steel SKH	guini		Drills Taps	Taps		Wn—Co										
General purpose lathe Putilis Carbide Wn-Co	Machi		Reamers			SKH										
No lathe Taps Turning center Cutting tools Surface grinder Surface grinder Cylindrical grinder Forming grinder Forming grinder Forming webM Wire White fused alumina A Jig grinder Forming grinder EbM Wire Wire Wire Wire Wire Wire Wire Jig grinder Eb octor Wire Wire Wire Wire Jig grinder Wire Wire Jig grinder Ji	6		Drills	End mills		Wn-Co										
Turning center Cutting tools Surface grinder Surface grinder Cylindrical grinder Surface grinder Cylindrical grinder Sindstones Grindstones Grindstones Forming grinder Eboron ED diamond Wire Wire Wire Wire Diamond Wire Wire tused alumina A Prink tused alum	ninin) erabnil		Reamers	Cutting tools		CBN										
Surface grinder White fused alumina A Cylindrical grinder Montte fused alumina B Cylindrical grinder Montte fused alumina B Cylindrical grinder A Cylindrical grinder Black silicon carbide GC Common carbide GC <th< td=""><th>sM va</th><td></td><th>Cutting tools</th><td></td><td>Diamond</td><td></td><td></td><td>(Nor.</td><td>-ferrous m</td><td>etal)</td><td></td><td></td><td></td><td></td><td>(Carbide,</td><td></td></th<>	sM va		Cutting tools		Diamond			(Nor.	-ferrous m	etal)					(Carbide,	
Cylindrical grinder Lig grinder Jig grinder Grindstones Grindstone		Surface arinder				WA										
Uig grinder Grindstones Green silicon carbide GC		000000000000000000000000000000000000000				A										
Jig grinder Grindstones Green silicon carbide GC Committee of the complete of the com		Cylindrical grinder			Pink fused alumina	PA H										
Profile grinder Electrode master master Mire Mire CU-Zn (Non-ferrous metal) CU-Zn	Grinding	Jig grinder	Grindstones	Grindstones	areen silicon carbide	ور ور										
Forming grinder		Drofile arinder				ى ن		(Nor.	-ferrous mo	etal)						
Forming grinder						CBN										
EDM Electrode master Copper, brass CI master master Copper, brass CI werbm Wire Wire Tungsten W		Forming grinder			ED diamond			(Nor.	-ferrous m	etal)					(Carbide,	
MEDM Wire Tungsten Tungsten Wire Tungsten Wire Tungsten Wire Wire Tungsten W		L	Flectrode		Electrolytic copper, brass											
WEDM Wire Wire Tungsten	Electric	EDIM	master		Sopper tungsten, silver tungsten	- Wn										
Wire Wire Tungsten	discharge		:			CN—Zu										
		WEDM	Wire	Wire		Wn										\parallel

